Reward Estimation for Dialogue Policy Optimisation

Pei-Hao (Eddy) Su

DeepHack.Turing , 25 July 2017

Pei-Hao (Eddy) Su

Reward Estimation for Dialogue Policy Optimisation

Dialogue Systems

Motivation

- Chat-based Agents
 - Hope to talk about everything (open domain)

Proposal

- No specific goal, focus on conversation flow

- Achieve a certain task (closed domain)
- Combination of <u>rules</u> and <u>statistical</u> components
- Ground language using a knowledge base (ontology)

Why are the middle ages

called the Dark Ages?

• Pipeline dialogue systems [Henderson et al. 2005, Williams and Young 2007]

Because there were so

many knights...

End-to-End dialogue systems [Antoine et al. 2017, Wen et al. 2017]

Variants of Seq2Seq model: [Vinyals and Le 2015] [Serban et al 2016] [Al-Rfou et al. 2016] [Li et al. 2016]

Conclusion

Goal

Conclusion

Define a **learning objective** (reward) to train a dialogue system **on-line** from **real users**

Tasks

- Evaluate the dialogue (reward modelling)
- Deal with unreliable user rating
- Learn a dialogue policy
- Models
 - Recurrent neural networks, Gaussian processes
- Methods
 - Reinforcement learning, On-line learning, Active learning

Motivation	Proposal	Experiments	Conclusion
Outline			UNIVERSITY OF CAMBRIDGE

- Motivation Learning from real users
- Proposed Framework
- **B** Experiment
- **4** Conclusion

Pei-Hao (Eddy) Su

Reward Estimation for Dialogue Policy Optimisation

It beat GO champions in 2016 and 2017

Agent learns to take actions to maximise total reward

Agent learns to take actions to maximise total reward

Pei-Hao (Eddy) Su

Correct rewards are a crucial factor in dialogue policy training

Dialogue Policy

Agent

Pei-Hao (Eddy) Su

- Dialogue is a special RL task:
 - Human involves in <u>interaction</u> and <u>rating</u> (evaluation) of a dialogue
 - **Human**-in-the-loop framework: <u>human</u> is troublesome but useful

Rating: correctness, appropriateness, and adequacy

- Expert rating	high quality, <mark>high</mark> cost
- User rating	unreliable quality, medium cost
- Objective rating	Check desired aspects, low cost

Pei-Hao (Eddy) Su

Proposal

NIVERSITY OF

CAMBRID

The Reinforcement Signal in SDS

Typical Reward Function:

- per turn penalty -1
- Large reward at completion if successful
- Typically requires prior knowledge of the task
 - Simulated user
 - Amazon Mechanical Turk)
 - ✗ Real users

- Infer success (reward) directly from dialogues
 - Train a reward estimator from data (Su et al. 2015)

Objective-Baseline

- Needs task info.
- Learns only from Obj=Subj dialogue (500 out of ~900)

RNN-system

- No task/user feedback
- Learns from every dialogue (all 500)

RNN-system learnt policy more practically and efficiently than Objective-baseline

How to learn policy from real users?

- Infer success (reward) directly from dialogues
 - Train a reward estimator from data (Su et al. 2015)
- User rating
 - Noisy
 - Difficult/Costly to obtain

- Robust user rating model (Su et al. 2016)
 - Noisy \rightarrow Gaussian Process with uncertainty
 - Difficult/Costly \rightarrow Active Learning

- Motivation Learning from human users
- Proposed Framework
- **B** Experiment
- **4** Conclusion

Motivation	Proposal	Experiments	Conclusion
System Frame	work		UNIVERSITY OF CAMBRIDGE

Pei-Hao (Eddy) Su

Reward Estimation for Dialogue Policy Optimisation

Pei-Hao (Eddy) Su

Reward Estimation for Dialogue Policy Optimisation

Last hidden layer as dialogue representation

- where $y = \{+1, -1\}$
- Handle the issue of noisy and costly user rating
- Gaussian process (GP) with active learning

•
$$f(\boldsymbol{d}) \sim GP(m(\boldsymbol{d}), k(\boldsymbol{d}, \boldsymbol{d}'))$$

> $k(\mathbf{d}, \mathbf{d}') = p^2 \exp(-\frac{||\mathbf{d} - \mathbf{d}'||^2}{2l^2})$

Motivation

X Handle the issue of noisy and costly user rating

Gaussian process classifier for success rating

Add **Noise term** in the RBF kernel - More noise -> less certain

B. Active Reward Learning Model

- Active learning: threshold on prob.
 - λ : when to query user rating

$$k(\mathbf{d}, \mathbf{d}') = p^2 \exp(-\frac{||\mathbf{d} - \mathbf{d}'||^2}{2l^2}) + \sigma_n^2$$

Input correlation User rating noise

d. Dialogue representation **d**

x: labelled data

24/40

ЛRК

Conclusion

Experiments

0.4

0.2

Settles. Active Learning Literature Survey. 2009

Pei-Hao (Eddy) Su

Reward Estimation for Dialogue Policy Optimisation

Motivation	Proposal	Experiments	Conclusion
Outline			UNIVERSITY OF CAMBRIDGE

- Motivation Learning from human users
- **2** Proposed Framework
- **6** Experiment
- **4** Conclusion

t-SNE plot

Embed the reward model in SDS

- Cambridge restaur
 - ~100 venues
 - 3 informable slots: area, price range, food
 - 3 requestable slots: addr, phone, postcode

Reward:

- per turn -1,
- When dialogue ends, binary (0/1) * 20:

- On-line GP	Proposed method
- Subj	User rating only
- Off-line RNN (Su. et al. 2015)	RNN with 1K simulated data

 Crowd-sourced users from Amazon Mechanical Turk

Dialogue policy learning with real users

- Similar performance
- However, Supervised embedding requires additional labels
- Unsupervised method is thus more desirable

- All reached > 85 % after 500 dialogues
- On-line GP is more robust than Subj in longer run
- On-line GP needs only 150 queries from user rating

- Motivation Learning from human users
- Proposed Framework
- **B** Experiment
- Onclusion

Proposal: an on-line active reward learning framework

- Unsupervised Dialogue Embedding: Bi-LSTM Encoder-Decoder
- On-line Active Reward Model: GP Classifier with uncertainty threshold
- Reduce <u>data annotation</u> and mitigate <u>noisy user rating</u>
- No need of labelled data and user simulator
- Achieve truly on-line policy learning from real users w/o task info

- Extend the reward model to (ordinal) regression/multi-class task
 Currently handles only binary classification
- Methods for evaluating the dialogue embedding
 - Mostly measured by downstream tasks

- Transfer knowledge across domains [1]
- Handle ambiguous meaning of languages [2]
- Learn to reply in richer context [3]
- Get high-quality data [4]

[1] Gašić et. al, Policy Committee for adaptation in multi-domain spoken dialogue systems, ASRU 2015
 [2] Mrkšić, et. al, Counter-fitting Word Vectors to Linguistic Constraints. NAACL 2016

[3] Su et. al, Sample-efficient Actor-Critic Reinforcement Learning with Supervised Data for Dialogue Management, SIGDIAL 2017

[4] Wen et. al, A Network-based End-to-End Trainable Task-oriented Dialogue System, EACL 2017

Proposal

Experiments

Acknowledgement

- Past & Present
 Group members:
 - Steve Young (Supervisor)
 - Milica Gasic (Advisor)
 - Dongho Kim
 - Pirros Tsiakoulis
 - Matt Henderson
 - David Vandyke
 - Nikola Mrksic
 - Shawn Wen
 - Lina Rojas Barahona
 - Stefan Ultes
 - Pawel Budzianowski
 - Inigo Casanueva

- Financial supports:
 - Taiwan Cambridge PhD Scholarship

Funding from Engineering Department

Department of Engineering

Pei-Hao (Eddy) Su

Pei-Hao (Eddy) Su

Reward Estimation for Dialogue Policy Optimisation

- <u>Pei-Hao Su</u>, Milica Gašić, Nikola Mrkšić, Lina Rojas-Barahona, Stefan Ultes, David Vandyke, Tsung-Hsien Wen and Steve Young, "On-line Active Reward Learning for Policy Optimisation in Spoken Dialogue Systems". In Proceeding of ACL 2016
- <u>Pei-Hao Su</u>, David Vandyke, Milica Gašić, Dongho Kim, Nikola Mrkšić, Tsung-Hsien Wen and Steve Young, "Learning from Real Users: Rating Dialogue Success with Neural Networks for Reinforcement Learning in Spoken Dialogue Systems". In Proceeding of Interspeech 2015
- David Vandyke, <u>Pei-Hao Su</u>, Milica Gašić, Nikola Mrkšić, Tsung-Hsien Wen and Steve Young, "Multi-Domain Dialogue Success Classifiers for Policy Training". In Proceeding of ASRU 2015

References

Chat-based Systems

- Oriol Vinyals, Quoc Le, "A Neural Conversational Model". In arXiv 1506.05869
- Iulian V. Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, Joelle Pineau, "Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models". In AAAI 2016
- Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, Dan Jurafsky, "Deep Reinforcement Learning for Dialogue Generation". In EMNLP 2016
- Al-Rfou et al., "Conversational Contextual Cues: The Case of Personalization and History for Response Ranking". In arXiv 2016

Task-oriented Dialogue Systems

- James Henderson, Oliver Lemon, Kallirroi Georgila, "Hybrid Reinforcement/Supervised Learning for Dialogue Policies from COMMUNICATOR data". In IJCAI Workshop 2005
- Jason Williams and Steve Young, "Partially observable Markov decision processes for spoken dialog systems". In CSL 2007
- Antoine Bordes, Y-Lan Boureau, Jason Weston, "Learning End-to-End Goal-Oriented Dialog". In ICLR 2017
- Wen et. al, "A Network-based End-to-End Trainable Task-oriented Dialogue System", in EACL 2017

Questions?

-Low nois	se condition- (User Subjective Evaluation: Success, on-line GP Evaluation: Success)
Machine	: Hello, welcome to the Cambridge dialogue system, What kind of food would you like?
Human	: [Top ASR] Yeah I want to find a restaurant that serves European food.
	[Top SEM] inform(food=european,type=restaurant)
Machine	: Hotel du Vin and Bistro is a nice place. It serves European food.
Human	: [Top ASR] Uh what is the address and phone number?
	[Top SEM] request(phone,addr)
Machine	: Hotel du Vin and Bistro is a nice place. Their address is 15-19 Trumpington Street and their phone is 01223 227330.
Human	: [Top ASR] Thank you goodbye.
	[Top SEM] bye()
Machine	: Thank you for using this system.

phs26@cam.ac.uk http://mi.eng.cam.ac.uk/~phs26/

Pei-Hao (Eddy) Su

N /	. •	. •	
\mathbf{N}	OTIV	vation	

Proposal

Pei-Hao (Eddy) Su

Reward Estimation for Dialogue Policy Optimisation

Example Dialogues – Low Noise

-Low noise condition- (User Subjective Evaluation: Success, on-line GP Evaluation: Success) Machine : Hello, welcome to the Cambridge dialogue system, What kind of food would you like? : [Top ASR] Yeah I want to find a restaurant that serves European food. Human [Top SEM] inform(food=european,type=restaurant) Machine : Hotel du Vin and Bistro is a nice place. It serves European food. : [Top ASR] Uh what is the address and phone number? Human [Top SEM] request(phone,addr) Machine : Hotel du Vin and Bistro is a nice place. Their address is 15-19 Trumpington Street and their phone is 01223 227330. Human : [Top ASR] Thank you goodbye. [Top SEM] bye()

: Thank you for using this system. Machine

Example Dialogues – High Noise

-Higher n	oise condition- (User Subjective Evaluation: Success, on-line GP Evaluation: Success)
Machine	: Hello, welcome to the Cambridge dialogue system, What kind of food would you like?
Human	: [Top ASR] And I want to find a expensive restaurant it should be in the south part of town.
	[Top SEM] inform(area=south, pricerange=expensive, type=restaurant)
Machine	: Gourmet burger kitchen is a nice place it is in the expensive price range.
Human	: [Top ASR] And do you have something else?
	[Top SEM] null()
	[2nd SEM] require()
Machine	: Did you say you are looking for a venue in the area of south?
Human	: [Top ASR] Yes.
	[Top SEM] affirm()
Machine	: Frankie and Benny's is a nice place, it is in the south part of town and it is in the expensive price range.
Human	: [Top ASR] Okay can I have the uh address phone number called for any.
	[Top SEM] request(addr)
	[2nd SEM] request(phone,addr)
Machine	: Frankie and Benny's is a nice place.
	Their address is Clifton Way and their phone number is 01223 412430.
Human	: [Top ASR] What is the pub called for free you any?
	· · · ·
	[5th ASR] What is the post code for free you any?
	[Top SEM] request(postcode)
Machine	: Frankie and Benny's is a nice place. Their postcode is C.B 1, 7 D.Y.
Human	: [Top ASR] Thank you goodbye.
	[Top SEM] bye()
Machine	: Thank you for using this system.

Reward Estimation for Dialogue Policy Optimisation