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Variants	of	Seq2Seq	model:
[Vinyals and	Le	2015]
[Serban et	al	2016]
[AI-Rfou et	al.	2016]
[Li	et	al.	2016]

Dialogue	Systems

• Chat-based	Agents
– Hope	to	talk	about	everything	(open	domain)
– No	specific	goal,	focus	on	conversation	flow

• Task-oriented	System
– Achieve	a	certain	task	(closed	domain)
– Combination	of	rules and	statistical components
– Ground	language	using	a	knowledge	base	(ontology)		

• Pipeline	dialogue	systems	[Henderson	et	al.	2005	,	Williams	and	Young	2007]
• End-to-End	dialogue	systems	[Antoine	et	al.	2017,	Wen	et	al.	2017]

Why	are	the	middle	ages	
called	the	Dark	Ages?

Because	there	were	so	
many	knights…
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Task-oriented	Dialogue	System

With	paid	subjects

Task:	
- Find	a	restaurant,	
Chinese,	cheap,	west
- Ask	phone,	address

Hi,	How	may	I	help	you?

Where	in	the	city	would	you	like?

Yim Wah is	a	nice	Chinese	place.

It	is	at	2-4	Lensfild Road.

Thanks,	goodbye.

I	want	a	cheap	Chinese	Restaurant.

Somewhere	in	the	west,	please.

Great,	can	you	give	me	the	address?

Ok,	thank	you,	bye!

Objective:	Fail
(no	phone)

Success	evaluation

Subjective:	Success
(get	all	he	asked)

AmbiguityNot	Practical
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Goal

Define	a	learning	objective (reward)	to	
train	a	dialogue	system	on-line from	real	users

• Tasks
Ø Evaluate	the	dialogue	(reward	modelling)
Ø Deal	with	unreliable	user	rating
Ø Learn	a	dialogue	policy

• Models
Ø Recurrent	neural	networks,	Gaussian	processes

• Methods
Ø Reinforcement	learning,	On-line	learning,	Active	learning



Reward	Estimation	for	Dialogue	Policy	OptimisationPei-Hao (Eddy)	Su 5/40

Motivation ConclusionExperimentsProposal

Outline

� Motivation	– Learning	from	real	users
� Proposed	Framework
� Experiment
� Conclusion
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Pipeline	Spoken	Dialogue	System

NLG

Speech	Generation

TTS

Dialogue	
Policy

Dialogue	Manager

Belief	State	
Tracker	

U s e r

ASR Semantic	
Decoder

Speech	Understanding

Inform(name=Yim Wah,	area=west)

Somewhere	in	the	west,	please.

Somewhere	in	the	wet,	please.

…

East West … None
0.01 0.94 0 0.05

Yim Wah is	a	nice	place	in	the	west.

Area
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It	beat	GO	champions	in	2016	and	2017

Agent	learns	to	take	actions	
to	maximise total	reward

Agent
observationaction

reward

Environment

Next	move

Reinforcement	Learning	101
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Agent	learns	to	take	actions	
to	maximise total	reward

Agent
observationaction

reward

Environment

Dialogue	
Policy

=	user

Reinforcement	Learning	101

Inform(area=north) area=north :	0.94
area=east :	0.06Inform_area
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Dialogue	Manager	in	RL	framework
U s e r

Reward	R
Observation	OAction	A

Environment

Agent

Correct	rewards	are	a	crucial	factor	in	dialogue	policy	training	

Speech	
Generation

Speech	
Understanding

Dialogue	Policy
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n Dialogue	is	a	special	RL	task:
n Human	involves	in	interaction and	rating (evaluation)	of	a	dialogue
n Human-in-the-loop	framework:	human is	troublesome	but	useful

n Rating:	correctness,	appropriateness,	and	adequacy

Reward	for	RL		≅ Evaluation	for	SDS

- Expert	rating high quality,	high cost
- User rating unreliable	quality,	medium cost
- Objective	rating Check desired	aspects,	low cost
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Typical	Reward	Function:
n per	turn	penalty	-1
n Large	reward	at	completion	if

Ø Typically	requires	prior	knowledge of	the	task
✔ Simulated	user
✔ Paid	users	(Amazon	Mechanical	Turk)
✖ Real	users

The	Reinforcement	Signal	in	SDS

successful
|||

…

﹅
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How	to	learn	policy	from	real	users?

n Infer	success	(reward)	directly	from	dialogues
n Train	a	reward	estimator	from	data	(Su et	al. 2015)

The	Reinforcement	Signal	in	SDS

…

f1 f2 f3 f4 fT

Output
Hidden	Layers

1/0
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RNN	Reward	Estimator	for	Policy	Learning

The	Reinforcement	Signal	in	SDS

RNN-system	learnt	policy	more	practically and	efficiently than	Objective-baseline

• Needs task	info.
• Learns	only	from	Obj=Subj dialogue	

(500	out	of	~900)

• No	task/user	feedback
• Learns	from	every dialogue	(all	500)

Objective-Baseline

RNN-system
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How	to	learn	policy	from	real	users?

n Infer	success	(reward)	directly	from	dialogues
n Train	a	reward	estimator	from data	(Su et	al. 2015)

n User	rating
l Noisy
l Difficult/Costly	to	obtain

n Robust	user	rating model	(Su	et	al. 2016)
l Noisyà Gaussian	Process with	uncertainty
l Difficult/Costlyà Active	Learning

The	Reinforcement	Signal	in	SDS
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Outline

� Motivation	– Learning	from	human	users
� Proposed	Framework
� Experiment
� Conclusion
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System	Framework
U s e r

Rating
Observation	OAction	A

Environment

Agent

Speech	
Generation

Speech	
Understanding

Dialogue	Policy

Reward	
Model
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Reward	modelling	on	user	binary	success	rating

System	Framework

Reward	
Model

Success/Fail
Embedding	
Function

Dialogue	
Representation

Reinforcement	
SignalQuery	

rating

A. B.
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Maps	a	dialogue	seq to	a	fixed-length	vector

A.	Dialogue	Embedding

Reward	
Model

Embedding	
Function

f2

f1
Turn 1

Turn 2

;
Distribution	over	
user	intention

1-hot	system	action Rescaled	Turn

[ ];ft:

- Training	data:	
{f1,…, fT}	for	each	dialogue

(Vandyke	&	Su	et.	al,	ASRU	2015)
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A.	Dialogue	Embedding	- Supervised

Re-use	the	supervised	RNN	

n Last	hidden	layer	as	dialogue	representation

Reward	
Model

Embedding	
Function

…

f1 f2 f3 f4 fT

Output
Hidden	Layers

ds
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A.	Dialogue	Embedding	- Unsupervised

Bi-LSTM	Encoder-Decoder	(Seq2Seq)

n Reconstruct	inputs	with	variable-lengths
n =[						;					]	captures	forward-backward	info
n Bottleneck	du is	the	dialogue	representation

n MSE	training	criterion:	

n ft:	input/target,	f’t:	prediction

Reward	
Model

Embedding	
Function

du
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B.	Active	Reward	Learning	Model

n Determine	class	probability:	𝑝 𝑦 𝒅, 𝐷 ,	given	𝐷 = {(𝒅+, 𝑦+)}+./0

- where	𝑦 = +1,−1

n Handle	the	issue	of	noisy and	costly user	rating

n Gaussian	process	(GP)	with	active	learning	

Reward	
Model

Embedding	
Function
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Gaussian	process	classifier	for	success	rating

n GP	is	shown	useful	in	policy	learning (Gasic ’14,	Casanueva ’15)
- Learn	from	few	observations	
- Provides	a	measure	of	uncertainty

n 𝑝 𝑦 = 1 𝒅, 𝐷
Ø f	∶ latent	function:	𝑅;<=	(𝒅) → 𝑅
Ø 𝜑:	probit function:	𝑅 → [0,1]

n 𝑓 𝒅 	~	𝐺𝑃(𝑚 𝒅 , 𝑘(𝒅, 𝒅′))

Ø

B.	Active	Reward	Learning	Model

Reward	
Model

Embedding	
Function
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Gaussian	process	classifier	for	success	rating

n Prior:
𝑓 𝒅 	~	𝐺𝑃(𝑚 𝒅 , 𝑘(𝒅, 𝒅′))

n Predictive	distribution:
𝑝(𝑦=1│𝒅,	𝐷)=𝜑(𝑓(𝒅│𝐷))

n Prediction	on	𝒅∗:
𝑝 𝑦∗ = 1 𝒅∗, 𝐷 = 𝜑(𝑚∗/ 1 + 𝜎∗O

� )

( Q∗

/RS∗T
� → 0 ⇒ 	𝜑 V → 0.5)

Dialogue representation d
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B.	Active	Reward	Learning	Model

Reward	
Model

Embedding	
Function
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B.	Active	Reward	Learning	Model

Gaussian	process	classifier	for	success	rating

🛠Handle	the	issue	of	noisy and	costly user	rating

n Add	Noise	term in	the	RBF	kernel
- More	noise	->	less	certain

n Active	learning:	threshold	on	prob.
- λ:	when	to	query	user	rating

User	rating	
noise

Input	correlation

Reward	
Model

Embedding	
Function
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B.	Active	Reward	Learning	Model

Categories	of	Active	Learning Reward	
Model

Embedding	
Function

Settles.	Active	Learning	Literature	Survey.	2009

noisy	rating
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Active	Reward	Model	in	the	loop

System	Framework

{f1,…, fT}	 d*σ(f1:T)

d*

.

In	green	area,	query!
->	User	rates:	Failed
->	Reward:	-1*scalar

D =	{(d,	y)}	
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Outline

� Motivation	– Learning	from	human	users
� Proposed	Framework
� Experiment
� Conclusion
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Dialogue	Representation	- Supervised

Visualising dialogue	distribution

n Labelled	restaurant	dialogue	data
n train:valid:test =	1000:1000:1000
n dim(ds)	=	32

n Analysis	using	t-SNE	on	ds
n Two	clusters:	Successful	v.s.	Failed
n Successful:	short,	Failed:	time-out
n Highly	affected	by	training	labels

t-SNE	plot

Reward	
Model

Embedding	
Function
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Dialogue	Representation	- Unsupervised

Visualising dialogue	distribution

n Un-labelled	restaurant	dialogue	data
n train:valid:test =	8565:1199:650
n dim(du)	=	64

n Analysis	using	t-SNE	on	du
n Colour gradient:	short	à long length	
n Successful	dialogues	<	10	turns

n Users	don’t	engage	in	longer	dialogues
n length correlates	highly	to	success

t-SNE	plot

Reward	
Model

Embedding	
Function
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n Cambridge	restaurant	domain:
- ~100	venues
- 3	informable slots:	area,	price	range,	food
- 3	requestable slots:	addr,	phone,	postcode

n Reward:	
n per	turn	-1,	
n When	dialogue	ends,	binary	(0/1)	*	20:

n Crowd-sourced	users	from	Amazon	
Mechanical	Turk

Embed	the	reward	model	in	SDS

System	Setup

U s e r

- On-line	GP Proposed	method

- Subj User	rating	only

- Off-line	RNN	
(Su.	et al.	2015)

RNN	with	1K simulated	data

Reward	
Model

Speech	
Generation

Speech	
Understanding

Dialogue	Policy
(GPRL)

Reward	
Model

Embedding	
Function
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n Similar	performance
n However,	Supervised	embedding	requires	additional	labels
n Unsupervised	method	is	thus	more	desirable

On-line	Dialogue	Reward	&	Policy	Learning

Dialogue	policy	learning	with	real	users
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n All	reached	> 85	% after	500	dialogues
n On-line	GP is	more	robust	than	Subj in	longer	run
n On-line	GP needs	only	150	queries	from	user	rating

On-line	Dialogue	Reward	&	Policy	Learning

Dialogue	policy	learning	with	real	users

Dialogues Reward	Model Subjective	(%)

400	- 500
Off-line	RNN

Subj
On-line	GP

89.0 +- 1.8
90.7 +- 1.7
91.7	+- 1.6

500 - 850 Subj
On-line GP

87.1	+- 1.0	
90.9 +- 0.9 *
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Outline

� Motivation	– Learning	from	human	users
� Proposed	Framework
� Experiment
� Conclusion
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n Proposal:	an	on-line	active	reward	learning	framework
n Unsupervised	Dialogue	Embedding:	Bi-LSTM	Encoder-Decoder
n On-line	Active	Reward	Model:	GP	Classifier	with	uncertainty	threshold
n Reduce	data	annotation and	mitigate	noisy	user	rating
n No	need	of	labelled	data and	user	simulator

n Achieve	truly	on-line	policy	learning from	real	users	w/o	task	info

Conclusion
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n Extend	the	reward	model	to	(ordinal)	regression/multi-class	task
n Currently	handles	only	binary	classification

n Methods	for	evaluating	the	dialogue	embedding
n Mostly	measured	by	downstream	tasks

Discussion
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Discussion

n Transfer	knowledge	across	domains	[1]
n Handle	ambiguous	meaning	of	languages	[2]
n Learn	to	reply	in	richer	context	[3]
n Get	high-quality	data	[4]

[1]	Gašić et.	al, Policy	Committee	for	adaptation	in	multi-domain	spoken	dialogue	systems,	ASRU	2015
[2]	Mrkšić, et.	al, Counter-fitting	Word	Vectors	to	Linguistic	Constraints.	NAACL	2016
[3]	Su	et.	al,	Sample-efficient	Actor-Critic	Reinforcement	Learning	with	Supervised	Data	for	Dialogue	Management,	SIGDIAL	2017
[4]	Wen	et.	al,	A	Network-based	End-to-End	Trainable	Task-oriented	Dialogue	System,	EACL	2017
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Questions?

phs26@cam.ac.uk
http://mi.eng.cam.ac.uk/~phs26/
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Example	Dialogues	– Low	Noise
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Example	Dialogues	– High	Noise


