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Abstract—Learning languages in addition to the native language
is very important for all people in the globalized world today, and
computer-aided pronunciation training (CAPT) is attractive since
the software can be used anywhere at any time, and repeated as
many times as desired. In this paper, we introduce the immersive
interaction scenario offered by spoken dialogues to CAPT by
proposing a recursive dialogue game to make CAPT personalized.
A number of tree-structured sub-dialogues are linked sequentially
and recursively as the script for the game. The system policy at
each dialogue turn is to select in real-time along the dialogue the
best training sentence for each specific individual learner within
the dialogue script, considering the learner’s learning status and
the future possible dialogue paths in the script, such that the
learner can have the scores for all pronunciation units considered
reaching a predefined standard in a minimum number of turns.
The purpose here is that those pronunciation units poorly pro-
duced by the specific learner can be offered with more practice
opportunities in the future sentences along the dialogue, which
enables the learner to improve the pronunciation without having
to repeat the same training sentences many times. This makes the
learning process for each learner completely personalized. The
dialogue policy is modeled by Markov decision process (MDP)
with high-dimensional continuous state space, and trained with
fitted value iteration using a huge number of simulated learners.
These simulated leaners have the behavior similar to real learners,
and were generated from a corpus of real learner data. The
experiments demonstrated very promising results and a real
cloud-based system is also successfully implemented.

Index Terms—Computer-aided pronunciation training (CAPT),
computer-assisted language learning, dialogue game, Markov de-
cision process, reinforcement learning.

I. INTRODUCTION

I N the world of globalization today, the geographical dis-
tance is no longer a barrier for the communication between

people, but instead different languages and cultural back-
grounds appear to be. This leads to a fast growth in the demand
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on second language acquisition in recent years. Traditional
in-classroom lessons are useful, but one-to-one tutoring offers
a much more effective language learning environment despite
its high cost. Computer-assisted language learning (CALL)
becomes very attractive as speech and language processing
technologies advance. Although computers cannot serve as
good as human tutors, softwares can be easily spread and
repeatedly used as desired by learners anywhere at any time.
Correct pronunciation is usually the first and most important

issue in language learning. Computer-aided pronunciation
training (CAPT) is thus an important sub-area of CALL,
including automatic pronunciation evaluation which offers
numerical feedback, descriptive judgments or corrective sug-
gestions. Goodness-of-Pronunciation (GOP) proposed by Witt
and Young [1] is a good example of posterior probability
based pronunciation evaluation score derived with Automatic
Speech Recognition (ASR) technologies. ASR has been further
utilized or extended in many following studies [2]. Harrison et
al. developed an extended recognition network that included
erroneous pronunciation patterns with an ASR framework in
order to detect the mispronunciation within learners’ utterances
[3]. A series of work led by Minematsu and Hirose also in-
troduced speaker-independent structural representation with a
goal to eliminate the difference caused by different speakers
and acoustic conditions for better pronunciation evaluation
[4]–[7]. The above are several instances demonstrating the
multifaceted research directions towards the goals of CAPT.
The objective of CALL can be realized in more comprehen-

sive ways such as systems and games. Strik et al. developed
a web-based role-playing environment for practicing con-
versation in Dutch in the DISCO and GOBL projects [8],
[9]; Educational Testing Service Research (ETS Research)
presented an online practice test, SpeechRater, for the Test of
English as a Foreign Language internet-based test (TOEFL
iBT) and analyzed the effectiveness of different information
offered [10]–[12]; A series of games for language learning led
by Seneff used speech and language processing techniques
[13]–[17]. NTU Chinese developed at National Taiwan Uni-
versity (NTU) is an online software system which is able to
provide pronunciation evaluation and corrective feedback for
non-native Chinese learners [18]. Also, “Rosetta Stone” [19]
and “English Town” [20] are popular language learning prod-
ucts nowadays being used by many language learners. These
are typical examples of CALL systems focusing differently
from pronunciation learning to vocabulary learning, from
spoken dialogues to different learning scenarios.
On the other hand, spoken dialogues have been extensively

investigated and widely used for long in speech processing com-
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munity. Traditionally, most spoken dialogue systems have been
developed to serve specific purposes [21], [22], for example
slot-filling tasks such as airline ticket booking or city infor-
mation querying [23], [24], in which the user-system interac-
tion is very often modeled in a statistical framework. When
spoken dialogues were used for language learning, a more im-
mersive learning environment including language interaction
experiences can be provided. Raux and Eskenazi proposed to
use correction prompts in task-oriented spoken dialogues for
language learning [25]. Johnson reported the Tactical Language
Training System (TLTS) which offered interactive lessons and
games for foreign language communication skill training [26].
These are just a few examples of using spoken dialogues in
CALL.
Recently we tried to extend the functionalities of pronuncia-

tion evaluation and corrective feedback provided by NTU Chi-
nese [18] for the purpose of offering furthermore the immer-
sive learning environment by spoken dialogues. We proposed
a new dialogue game framework on top of the NTU Chinese
pronunciation evaluation software [27]. In this framework, sen-
tences to be practiced were adaptively selected on-line along
the dialogue for each learner, based on the scores the learner
has received for each pronunciation unit so far. The sentence
selection was in such a way that those pronunciation units with
lower scores could be offered with more practice opportuni-
ties along the dialogue, while those with high scores were not
cared. Thus these poorly-pronounced units could be practiced
repeatedly along the dialogue, and the learner did not have to
repeat the same training sentence many times. This design en-
abled the learning materials for each learner to be completely
personalized. The dialogue manager was modeled as a Markov
decision process (MDP) [28], [29] trained with reinforcement
learning and fitted value iteration using simulated learners gen-
erated from real learner data. This framework was then im-
proved to become a recursive dialogue game [30]. The dialogue
script was made recursive and the dialogue paths in the script
could be infinitively long. The dialogue management policy was
optimized such that the learner’s scores of the pronunciation
units (or a selected subset) could be practiced and improved to
achieve a pre-defined standard in a minimum number of turns.
This dialogue management policy was again optimized by an
MDP, but with high-dimensional continuous state space for pre-
cise representation of the learning status for all pronunciation
units considered.
In this paper, we present a complete framework integrating

the above dialogue game concepts for extension of NTU Chi-
nese including additional recent experimental analysis over dif-
ferent learning scenarios. A dialogue game system is also suc-
cessfully implemented and reported here as well. The rest of this
paper is organized as follows. Section II introduces the auto-
matic pronunciation evaluator used in this framework, the NTU
Chinese, the dataset used in the experiments, and the real learner
data from the NTU Chinese project. Section III then presents
the complete framework of the dialogue game proposed in this
paper, including the dialogue script, the dialogue manager mod-
eled with MDP, and the simulated learners. Sections IV and
V describe the experimental setup and results including anal-
ysis and discussions on the results. Section VI presents the real

system implementation and its features. Concluding remarks are
finally made in the last section.

II. AUTOMATIC PRONUNCIATION EVALUATOR AND DATASET
FROM THE NTU CHINESE PROJECT

The proposed framework requires an automatic pronuncia-
tion evaluator to offer and update the scores in real-time for all
considered pronunciation units produced by a specific learner.
The evaluator serves as a guide for selecting the future sentences
for the learner along the dialogue. In the work presented in this
paper, we use the NTU Chinese [18] as the automatic pronun-
ciation evaluator for learning Chinese as an example, although
the concept is equally applicable to all languages with different
pronunciation evaluators.

A. Automatic Pronunciation Evaluator: NTU Chinese

As mentioned above, NTU Chinese is a successfully op-
erating online Chinese pronunciation evaluation software,
specifically designed for providing the learners quantitative
assessments and multimedia corrective feedback for their pro-
nunciation. Learners can practice their listening and speaking
skills anywhere and at anytime. It was produced by a joint
effort between National Taiwan University (NTU) and some
industry partners. NTU Chinese is able to evaluate the utter-
ances produced by an individual learner with numerical scores.
Those scores are given to each pronunciation units in four
different aspects: pronunciation, pitch, timing and emphasis;
where the first is primarily phonetic evaluation and the other
three are primarily prosodic evaluation. For those phonemes
with scores below a threshold, a 3-dimensional video will
appear on the screen to demonstrate the correct ways of the vo-
calization when producing the phoneme, including the relative
positions among the lip, tongue, teeth and other articulators.
Description judgments or corrective suggestions for improving
the pronunciation will also appear on the screen when needed.
Such feedback in CALL systems have been shown in earlier
studies [31]–[33] to be able to help the learner improve their
pronunciation skills. The scoring algorithm is not only based
on signal analysis with acoustic and prosodic models such as
those using posterior probabilities, but further improved by
learning from the scores given by professional human Chinese
teachers over a corpus produced by a group of real non-native
Chinese learners. The above learning’s corpus, scored by
human Chinese teachers, all learning sentences and the course
content currently used in this software were contributed by the
International Chinese Language Program (ICLP) of National
Taiwan University.

B. Real Learner Data from NTU Chinese

The real learner data used in this paper are a set of read
speech corpus collected in 2008 and 2009 from real learners
practicing their Mandarin Chinese with NTU Chinese. A total
of 278 learners at different learning levels (beginners, inter-
mediate and advanced) from 36 different countries, with bal-
anced gender and a wide variety of native languages, partici-
pated in the recording task. Each learner was asked to read a
set of 30 phonetically balanced and prosodically rich sentences,
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covering almost all frequently usedMandarin syllables and tone
patterns, each of which contained 6 to 24 Chinese characters.
These 30 sentences were selected from the learning materials
used in NTU Chinese.

III. PROPOSED DIALOGUE GAME FRAMEWORK

The complete framework proposed is presented in this
section. It includes three major components: the dialogue
script (subsection III-C), the Markov decision process (MDP)
(Sections III-D, III-E, III-F), and the simulated learner gen-
eration (Section III-G). They will be presented after the
background ideas (Section III-A) and a framework overview
(Section III-B).

A. Background Ideas: Repeated Practice in Dialogue

The background ideas here come from the extension of NTU
Chinese. NTU Chinese is currently used by many Chinese
learners in many institutions. However, the contents or learning
materials of the software include only many question/reply
pairs but no further dialogue and interaction. When a learner
receives scores, feedback or suggestions with regard to the
pronunciation of the produced utterance, he or she needs to
repeat the same sentences again and again, trying to improve
the pronunciation. But repeated practice on the same sentences
is in any case boring to the learner. Therefore in the framework
proposed here, we try to introduce a dialogue game scenario
based on the existing pronunciation evaluation, such that the
learners can continue interacting with the computer in inter-
esting dialogues rather than repeating the same sentences. At
the same time, those pronunciation units with lower scores will
appear much more frequently within the dialogue in the near
future, so the learner can practice these units much more times
but in many different sentences.
In addition to the feedback of evaluation scores, description

judgments or corrective suggestions to the learners as the
core mechanisms for helping the learners in CALL systems
[31]–[33], the necessity and effectiveness of repeated pronunci-
ation practice has also been clearly shown in related literatures
[34]–[36]. Such repeated practice is even considered as the
repetition drill in language learning approaches [37], which
underlines the importance of intensive practice in language
learning for memorization and automatism by the learners with
immediately offered quantitative assessments and corrective
feedbacks. However, repeated practice on the same sentence is
boring, which leads to the dialogue game approach proposed
here: learners can not only practice different learning sentences
with instructions and feedbacks along the dialogue, but also
practice those poorly-produced pronunciation units repeatedly
within different sentences along the dialogue. Besides, as
mentioned earlier, spoken dialogues can offer more immersive
learning environments including language interaction experi-
ences. Therefore, the role-playing in practical dialogue scenario
can further familiarize the leaner with real life interactions and
help build the learner’s self confidence while conversing with
the target language [38].

B. Framework Overview

The overall system block diagram of the proposed framework
is shown in Fig. 1. Interaction between the Learner (at the lower

Fig. 1. System block diagram of the proposed dialogue game framework.

middle part) and the system involves Utterances Produced and
Selected Sentences. The Utterances Produced by the learner are
the input to the system, and the Selected Sentences offered by
the system are practiced by the learner. The Automatic Pronun-
ciation Evaluator (NTU Chinese in this work, at the lower right
corner) evaluates each pronunciation unit in the utterance. In ad-
dition to giving feedback to the learner immediately after each
utterance is pronounced, the scores of all pronunciation units
are updated and sent to the Pedagogical Dialogue Manager (on
the left side of the Learner), driven by the Sentence Selection
Policy (at the lower left corner), for recommending the next sen-
tence for the learner out of the Dialogue Script (at the upper right
corner). A set of Real Learner Data in the corpora (on the left
side of the Dialogue Script) is used to construct the Learner Sim-
ulation Model, which generates the Simulated Learners (at the
upper left corner) to train the Sentence Selection Policy based on
the Dialogue Script using the Fitted Value Iteration algorithm.
In this framework, both the computer and the learner need to

have multiple sentence choices at each turn along the dialogue.
A dialogue script properly designed for this purpose is there-
fore needed. Also, every sentence chosen by either the com-
puter or the learner influences the future sentences along the
dialogue significantly, resulting in very different distributions
for the counts of different pronunciation units for the learners
to practice in the future. The dialogue policy here is to select
the most appropriate sentence for the learner to practice at each
turn considering the learning status of the learner, such that more
opportunities are given to practice those poorly-produced pro-
nunciation units along the dialogue. Note that the sentences in
the dialogue script have fixed question/reply sequential relation-
ships. Thus selecting the next sentence containing the highest
frequency counts for the poorly-produced units doesn’t imply
such high frequency counts for those units will continue to ap-
pear in the future sentences. So clearly the sentence selection
policy needs to consider future sentences along the dialogue. In
this way the learner can achieve the goal of having the scores
of all (or a selected subset of) pronunciation units improved to
achieve a pre-defined standard in a minimum number of turns.
The advantage of this framework is when participating in an

interesting dialogue game, the learner can have diversified in-
teractions with the system in an immersive environment; the
learner can practice those poorly-produced pronunciation units
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Fig. 2. The example script of the tree-structured dialogue game in the restau-
rant scenario used here: starting from (1) Phone invitation and (2) Restaurant
reservation, all the way to (9) Saying goodbye and returning to (1) for next
meal. A segment of the scenario (4) Seating and meal ordering is also shown.

many times in very different sentences along the dialogue, rather
than producing the same set of boring sentences repeatedly. This
also provides very high flexibility for learners to have com-
pletely personalized sentence practice opportunities.

C. Recursive Dialogue Script

The dialogue script is the backbone of the proposed frame-
work, since the progress of the dialogue game is based on the
script. Here the script for the proposed dialogue game consists
of a series of tree-structured sub-dialogues which are cascaded
into a loop, with the last sub-dialogue linked to the first. The
initial script used in the preliminary experiments is the example
dialogue in the restaurant scenario and includes a total of nine
sub-dialogue, as shown in Fig. 2. It starts with the sub-dialogue
(1) for phone invitation, followed by sub-dialogue (2) for restau-
rant reservation and so on, all the way to the last sub-dialogue
(9) for saying goodbye, and returning to the sub-dialogue (1)
for the next meal. In this design there can be almost unlimited
numbers of dialogue paths within the script with any desired
length. The nine sub-dialogues in the initial example script have
a total of 176 turns. Each sub-dialogue contains conversations
between roles A and B - one the computer and the other the
learner. After an utterance is chosen and produced by one side,
there are a number of choices for the other. This results in the
script to be tree-structured. A segment of the sub-dialogue (4)
“Seating and meal ordering” is also shown in Fig. 2, where A is
the waiter and B the customer. The tree structure and multiple
dialogue paths are also clearly shown. This dialogue script used
below is designed by language teachers of National Taiwan Uni-
versity, such that the sentences included are phonetically bal-
anced and prosodically rich, with good coverage of commonly
used words on properly chosen learning level. The script can
be utilized in many different ways in addition to looping the
sub-dialogues recursively as shown in Fig. 2. For example, the
learner can practice only one sub-dialogue but recursively, or ar-
bitrarily cascading several sub-dialogues (e.g. sub-dialogue (1)

followed by sub-dialogue (3)(4)), or with different ordering but
recursively, etc., based on the learner’s preference.
As mentioned above, since both the computer and the learner

have multiple sentence choices at each dialogue turn, every
choice influences the future path significantly. This results in
very different distributions for the counts of different pronunci-
ation units for the learner to practice in the future, and is where
the sentence selection policy and Markov decision process can
operate and offer personalized learning.

D. Markov Decision Process (MDP)

The dialogue manager is the core technique in the approach
proposed in this paper. In order to select good training sentences
personalized for the learner based on the learning status in real
time during the interaction within the dialogue, we need a flex-
ible system policy capable of dealing with all possible different
learner situations. However, at each turn the learner’s pronun-
ciation performance for all pronunciation units (considered as
“system state”) may be changed and is unknown after producing
the next utterance, which implies the “state transition” is un-
certain or non-deterministic. On the other hand, the learning
process for a specific learner has a given final goal where the
scores for all pronunciation units reach a pre-defined standard
(considered as “goal state”). So the desired system policy is to
select a sequence of sentences along the dialogue script (con-
sidered as a sequence of “actions”) such that the “goal state”
can be reached in minimum number of turns. This implies to
select a sequence of “actions” toward some goal over an un-
certain “state space” considering some desired objective func-
tion, which is exactly a planning problem under uncertainty and
is often handled with Markov decision process (MDP). In this
approach the uncertain state problem are properly taken care
of with the concept of expectation, and the desired best policy
can be learned from data. This is a data-driven approach, in
which the best policy is learned completely based on the training
materials (here the expert-designed dialogue script and simu-
lated/real learner data) without any hand-crafted effort. This
data-driven nature also implies the approach is equally appli-
cable to all different languages, all different learning scenarios
(e.g. the script here is in restaurant scenario, but can be others
such as shopping or traveling), and all different learning goals
(e.g. for learning any desired set of pronunciation units), as long
as given the needed training data for the propose. Thus the Chi-
nese pronunciation learning in restaurant scenario is simply an
example illustrating the feasibility of the approach. It can cer-
tainly be extended to all other languages with all different pur-
poses. The above reasons explain why MDP is chosen for dia-
logue manager modeling.
Of course, policy can also be established by some heuristic

methods or some other planning algorithms. Heuristic methods
are often hand-crafted, based on some principles or criteria.
Good examples include the arbitrary method (randomly
choosing the next sentence for the learner to practice in the case
here) and the greedy method (selecting the next sentence with
the most count of the learner’s poorly-pronounced units in the
case here), but both of them can offer very little benefits since
they are limited to the chosen principles or criteria. The greedy
method is not very helpful because selecting the next sentence
with the most count of the learner’s poorly-pronounced units



SU et al.: RECURSIVE DIALOGUE GAME FOR PERSONALIZED CAPT 131

never implies the same for future sentences in the dialogue
script. The well-known planning algorithms developed for de-
terministic problems such as search algorithm similarly can
only yield very limited effect, because the uncertain state space
considered here makes the case non-deterministic. Detailed
experimental results comparing between different methods with
the proposed policy using MDP will be shown in Section V.
Moreover, since the learner’s status may be misjudged by the
system (the scores of the pronunciation units estimated by the
Automatic Pronunciation Evaluator may be wrong), a more
generalized version of MDP called partial observable Markov
decision process (POMDP) can certainly be applied here,
which regards the learner’s status estimated by the Automatic
Pronunciation Evaluator as one sample from the true learner’s
status and maintains a probability distribution over all possible
learners’ status. Here in the initial work of this paper we choose
to investigate the use of MDP with preliminary experiments,
while the application of POMDP will be considered in the
future.
An MDP [39], [40] is a mathematical framework for

modeling sequential decision making problems, formally rep-
resented by the 5-tuple , including the set of
all states , the set of possible actions , the reward function
, the Markovian state transition function , and the discount

factor which determines the effect of future outcomes on
the current state . When an action is taken at the state , a
reward is received and the state is transited to a new state
. Solving the MDP consists of determining the best action
to be taken at each state called a policy , which maximizes
the expected total discounted reward starting from the state ,
or value function , where
is the starting state, is the reward gained in the -th state

transition, and the policy maps each state to an
action . The above value function can be further analyzed
by the state-action (Q) value function, which is defined as the
value function of taking action at state based on the policy

, where
is the action taken at state . Thus the optimal policy can
be expressed as by a greedy
selection over the state-action pairs, where the maximization
considers every for all possible policies while
focusing on the action to be taken at the state only. The
goal of finding the optimal policy is therefore equivalent to
maximizing these Q functions.
The above Q functions can be updated iteratively toward the

optimal values in a process known as fitted value iteration based
on the Dynamic Programming (or Bellman) Equation:

(1)

where the Bellman mapping (also called the Bellman backup
operator) is defined as:

(2)
where stands for the expectation evaluated for the
next state following transition probability distribution from
state with action taken, and is the reward gained

when transiting from state to by taking action . So in every
iteration each is updated as in (1) by the backup oper-
ator as in (2).

E. MDP for the Dialogue Game

Here we describe how the proposed dialogue game is mod-
eled using the Markov decision process.
Continuous state Representation: The state represents the

learning status of the learner. It consists of the average scores
obtained so far for all the pronunciation units considered in the
game given by the Automatic Pronunciation Evaluator in Fig. 1,
each being a continuous value (ranging from 0 to 100 in the case
of NTU Chinese in the work presented here), and the present
value is directly observable by the system. This results in a
high-dimensional continuous state space ( for the
work here, where is the total number of pronunciation units
considered.). Note that the state is changed after an additional
sentence is produced by the learner and the state transition is
uncertain. In addition, since the system needs to know which
dialogue turn the learner is at, the dialogue turn index is also
included in the state space.
Action Set: In each state at dialogue turn , the actions to

be taken are the available sentence options to be selected for
practice. Since the dialogue script used is in tree structure, the
number of actions (next available sentences to be chosen) in
every specific state may vary even at the same given turn.
Reward Function: A dialogue episode contains a sequence

of state transitions , where is the -th
state and is the action taken at , and represents the ter-
minal state, in which the scores of all pronunciation units con-
sidered reach a pre-defined standard. The goal here is thus to
train a policy that can offer the learner at each turn the best se-
lected sentence to practice considering the learning status, such
that the terminal state can be reached within a minimum
number of turns. Hence every state transition is rewarded
as the penalty for an extra turn ( ), and
is the finishing reward gained when the terminal state is

reached. The final total reward is then the sum of all rewards
obtained: . So the goal here is to maximize . In
addition, a timeout count of state transitions is used to limit
the episode lengths.

F. Policy Training for the Dialogue Game

Here we wish to find the optimal policy which maximizes
the final total reward as defined above [40]. Since we have
a high-dimensional continuous state space as mentioned above,
we use the function approximation method [41]–[43] to approx-
imate the exact value function with a set of basis
functions:

(3)

where is the parameter (weight) vector corresponding to the
basis function vector . The goal of finding the optimal
policy can then be reduced to finding the appropriate parame-
ters for a good approximation for . A sam-
pled version of the Bellman backup operator in (2)
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is introduced for the -th sampled transition as
in (4),

(4)

With a batch of transition samples
for the -th iteration, least-square linear regression can be per-
formed to find the new parameter vector at the -th iteration
so that approaches as precisely as possible.
The parameter vector is updated as

(5)

where the second term is the 2-norm regularized term weighted
by to prevent over-fitting. Therefore the approximation

approaches and converges to
along with the training iterations.
The above linear regression has a closed form solution that

can be easily performed at each iteration. If each transition
sample is viewed as a row vector and
as a scalar , the vectors and values for the training
samples can form a matrix and
a vector , then the linear regression solution of the updated
at the -th iteration is simply:

(6)

where is the identity matrix and is the regularized term.

G. Simulated Learner Generation from Real Learner Data

The MDP presented above requires a huge quantity of data
for training, and the training data should reflect the pronuncia-
tion behavior of real learners. Here we present the approaches
to generate simulated learners from real learner data for this
purpose. The Automatic Pronunciation Evaluator in Fig. 1 as-
signs scores to each pronunciation unit in every utterance of the
real learner data. These scores for each utterance pronounced
by a real learner are used to construct an utterance-wise score
vector , whose dimensionality is the number of pronunci-
ation units considered. Every component of the score vector
is the average score of the corresponding unit in the utterance;
those units unseen in the utterance are viewed as latent data and
treated with the expectation-maximization (EM) algorithm [44],
[45]. Hence every utterance produced by the real learner is used
to generate a separate score vector . Such utterance-wise score
vector can reflect the score correlation across different pronun-
ciation units with certain context relationships, as will be further
explained below. In our dataset as mentioned in Section II-B, we
have 278 learners, each with 30 utterances. Therefore we have
around 8000 score vectors for GMM training. The score vector
constructed from all utterances produced by all real learners are
then used to train a Gaussian mixture model (GMM) with the
EM algorithm that handles latent data. Note that the trainable
parameters within GMM are priors, mean vectors and covari-
ance matrices. When calculating and maximizing the likelihood
of a certain Gaussian mixture given a set of score vectors, each
missing score in (where the pronunciation unit in the corre-

Fig. 3. Learner Simulation Model for simulated learner generation.

sponding utterance is not presented) is simply substituted by the
value of the corresponding index within the mean vector of the
considered Gaussian estimated up to the previous iteration. In
this way all missing data in the score vectors can be properly
taken care of. This GMM is referred to as the Learner Simula-
tion Model and is shown in the left half of Fig. 3.
The GMM here not only aggregates the utterance-wise score

distribution statistics of the real learners, but also reflects the
utterance-wise correlation of scores across different pronuncia-
tion units within different contexts. For example, some Chinese
learners have difficulties pronouncing all retroflexed phonemes
(appearing frequently in Mandarin but not necessarily in other
languages) within the context of certain specific vocal tract
articulation. Such situation may be reflected in the above
GMM trained with the utterance-wise correlated score vectors
. Therefore each mixture of this GMM may represent the
pronunciation error distribution patterns for a certain group
of learners with similar native language backgrounds. On the
other hand, different Gaussian mixtures in the GMM may also
represent different learning levels (beginners, intermediate
and advanced) across the real learners. With this approach we
discover clusters of alike learning behavior without building a
speaker-wise models, and we can directly train the GMM from
raw data.
The adequate number of the mixtures in GMM is usually not

easy to determined manually. Increasing this number (adding
parameters) often yields higher model likelihood but may result
in over-fitting and lack of generalization as well. Therefore
Bayesian information criterion (BIC) [46], [47] is employed
here on GMM to handle this problem by taking into account
both the model likelihood and the parameter complexity
penalty. Assume that is the number of Gaussians, the total
number of continuously-valued free variables is:

(7)

where each Gaussian needs one variable for prior probability,
variables for the mean, and variables for the

covariance matrix. With this total number of free variables, the
value of the BIC is defined as the negative of the log likelihood
function plus a term for the model complexity penalty weighted
by the size of the training data ,

(8)

where is the parameter set for all the Gaussians. The goal is
then to find the number of Gaussians and the complete pa-
rameter set that minimizes (8). Through this criterion we can
obtain the proper parameter setting given the training data.
With the GMM trained, for the MDP policy training, we

first randomly select a Gaussian mixture component as a sim-
ulated learner group for a certain native language background
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TABLE I
A LIST OF ALL THE 101 MANDARIN PRONUNCIATION UNITS CONSIDERED IN THE EXPERIMENTS, INCLUDING PHONETIC UNITS
(22 INITIALS, 36 FINALS) AND PROSODIC UNITS (5 UNI-TONES, 19 INTRA-WORD BI-TONES AND 19 INTER-WORD BI-TONES).

THE ID INDICES IN THE PARENTHESES ARE THOSE USED IN THE HORIZONTAL AXES IN FIG. 6 AND 11

[48]–[50]. The mean vector of the selected Gaussian mixture
stands for the level of the simulated learners in this group on
each pronunciation unit, while the covariance matrix represents
the score variation within each unit and the score correlation
between units. When a sentence is to be pronounced by a
simulated learner, a score vector randomly sampled from this
mixture yields the scores for the units in this sentence, taken
as the simulated utterance produced by this simulated learner
within the group. This is then repeated many times both within
the group and across many different groups, as shown in the
right half of Fig. 3.
The goal here is to provide proper sentences for each indi-

vidual learner to practice in the dialogue such that the learner’s
pronunciation for all units considered reaches a pre-defined
standard in a minimum number of turns. However, the learner
simulation model mentioned above only models the pronun-
ciation performance given the real learner data but not the
characteristics of pronunciation improvement. Hence we need
to develop in addition an incremental improvement model for
the scores of pronunciation units produced by the simulated
learners. This can be achieved by assuming whenever the -th
pronunciation unit has been practiced times by a simulated
learner, the -th component of the mean vector in the Gaussian
mixture is increased by (to a higher level) and the -th
element in the covariance matrix of the Gaussian mixture de-
creased by (with more stable scores). Here , and are all
Gaussian random variables with means and variances assigned
according to the overall pronunciation performance of the
simulated learner. In other words, when more units in the mean
vector are closer to the pre-defined standard, the mean and
variance of the variable become smaller, and the means of the
variables and become larger and their variances smaller. So
the pronunciation of the simulated learner not only improves
incrementally along the dialogue path, but the improvement
becomes faster and more stable when the overall pronunciation
performance gets better. Detailed parameter setting for ,
and within our framework design will be mentioned below.

IV. EXPERIMENTAL SETUP

Experiments were performed on the complete recursive script
of the nine sub-dialogues for learning Mandarin Chinese as de-
scribed in Section III-B. The results reported below are all for
the computer as role A and the learner as role B. Totally 101

Mandarin pronunciation units were considered, including 58
phonetic units (context-independent Initial/Finals of Mandarin
syllables, where Initial is the initial consonant of a syllable, and
Final is the vowel or diphthong part but including optional me-
dial and nasal ending) and 43 prosodic units or tone patterns
(uni-tones, intra-word bi-tones (tones for two consecutive syl-
lables within a word) and inter-word bi-tones (tones for two con-
secutive syllables across a word boundary)). Detailed enumera-
tion of all 101 units is listed in Table I. Several different learning
scenarios were tested: learning tone patterns only, phonetic units
only, both, and focusing on several selected subsets of the units.
NTU Chinese [18] was used as the automatic pronunciation
evaluator for unit scoring of the real learner data. In the MDP
setting, the terminal state was defined as the situation when
95% of all pronunciation units considered were produced with
scores over 75 more than five times. The reward at the dialogue
terminal state was set to 0 and timeout count was 500, that
is, the dialogue game might end with reward -500 (reward -1 as
penalty for each turn) if the system didn’t arrive at the terminal
state in 500 turns. Multivariate Gaussian functions of 101 di-
mensions served as the basis functions in (3) to approx-
imate the value function. We set the number of basis functions
to 5 in this paper empirically, since higher parameter com-

plexities resulted in over-fitting [30]. These Gaussian functions
had fixed covariance matrices and we tried to have their means
evenly spread on the state space. All these Gaussian basis func-
tions had initial weights set to 1, then updated with (4), (5). The
system’s initial policy was always to choose the first sentence
among the candidate sentences. Five-fold cross-validation was
used: in each training iteration, four-fifths of the real learner
data were used to construct the GMM to generate simulated
learners for policy training, while the rest was used to train an-
other GMM to generate simulated learners for testing. This was
repeated five times and the average was taken. The number of
mixtures within the GMM for generating the simulated learners
was determined by BIC in (8). The parameters , and (all
conforms to Gaussian) in the incremental improvement model
for pronunciation scores mentioned in subsection 3.7 were set
based on the overall pronunciation performance. The mean and
variance of were respectively set and , where is
the percentage of well-produced unit with average score above
75. The mean and variance of and were both set
and . In the testing phase, the testing simulated learners
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went through the nine sub-dialogues either in sequential order
recursively or in arbitrary order until the terminal state was
reached. All MDP testing results reported were the average of
100 testing simulated learners.
The approach proposed here is a new framework for pronun-

ciation training with spoken dialogues. The standard evaluation
metrics for spoken dialogue systems, such as the task success
rate assessed by either simulated or real users under different
recognition word error rate (WER) [51], [52], cannot be applied
because of the very different task goal and application scenario.
There exists no any prior work with similar task goal which can
be compared with either. We therefore designed the evaluation
methodologies for the specific task based on the objective of
personalized pronunciation training, in which the system is to
provide personalized training sentences as effective as possible.
We also try to compare the proposed approach with several ex-
isting methods for the objective here when possible. This leads
to the followingways of demonstrating the experimental results:
1) Average number of dialogue turns needed for the test
learners to reach the terminal state, or all pronunciation
units considered having scores achieving a pre-defined
standard, is taken as the primary indicator for system
performance. This is easily understandable, since the goal
of the system is to have this number as small as possible.

2) Learning curves for the average dialogue turns needed are
used to show how the policy is improved during learning.
Learning curves are usually used in machine learning
applications to show how the system objective and model
parameters are optimized along with the increase of
training iterations. In the experiments below we use the
learning curves for the average number of dialogue turns
needed (system objective) to demonstrate the way the
policy was learned with different setting of model param-
eters, or under the goal of focusing on different subsets of
pronunciation units.

3) Number of repeated practice opportunities on each
poorly-produced pronunciation unit for a typical example
simulated learner is used to show the effectiveness of
the system policy when comparing with other existing
methods. As mentioned previously, repeated practice is a
major approach for language learning and the goal here
is to offer repeated practice to poorly-produced units.
Such experimental results can illustrate how the proposed
approach actually works.

V. EXPERIMENTAL RESULTS

A. Parameter Tuning

We used the basis function vector as in (3) to approx-
imate the value function, and casted all basis functions within
this vector as multivariate Gaussians with fixed covariance ma-
trices. Here a good estimate for these covariance matrices are
needed, so we assumed these matrices to be diagonal with iden-
tical diagonal values . In addition, we also need to estimate
an appropriate value for the regularized term weight in (5).
Fig. 4 demonstrates the learning curves for the number of dia-
logue turns averaged over 100 testing simulated learners needed
to reach the terminal state, plotted as functions of the number
of training iterations, under different parameter combinations:

Fig. 4. Number of dialogue turns needed with respect to number of training
iterations under different parameter settings when all 101 units were considered.

Fig. 5. Number of dialogue turns needed with respect to the number of training
iterations for different sets of pronunciation units.

and . In these cases all the
101 units mentioned above were considered and all the nine
sub-dialogues trees were went through in sequential order re-
cursively. As shown in the Fig., the system indeed learned to
optimize its policy in order to offer better dialogue paths in
the script to every individual testing simulated learner along
with the training process. It is worth mentioning that with

and , the system performed the best which
actually converged at an average of 250.66 turns, while other
settings ended with relatively over-fitted results. Therefore, in
all following experiments we used the parameter setting of

and . Note that the parameters obtained here
are certainly not optimal since the too limited quantity of the
available training data and better settings are definitely needed.
However, we still tried to find adequate system policy with the
very limited training data.

B. Number of Dialogue Turns Needed for Different Sets of
Pronunciation Units

In Fig. 5, we plot the learning curves for number of turns
needed to reach the terminal state averaged over 100 testing
simulated learners with respect to the number of the training
iterations (the training processes went through the nine sub-dia-
logues in sequential order), when different subsets of units were
considered: 58 Initial/Finals only (blue), 5 uni-tones plus 19
intra-word bi-tones (red), and 5 uni-tones plus 19 inter-words
bi-tone (green). The solid curves (labeled “Seq”) are those when
the testing simulated learners went through the nine sub-dia-
logues sequentially and recursively. The dashed curves (labeled
“Arb”) are those when the testing simulated learners went
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through the sub-dialogues in arbitrary order, while the system
policies were trained with training simulated learners going
through the sub-dialogues in sequential order. For example,
the testing learner could jump to the fourth sub-dialogue after
finishing the second sub-dialogue (after restaurant reservation,
the learner wishes to learn how to order meals first). Clearly
the three solid curves (labeled “Seq”) for different sets of target
units considered yielded promising results. The number of
needed turns for blue, red and green solid curves converged
at 365.60, 199.36, 89.52 turns respectively. As the number of
target units becomes smaller, the needed number of turns is
also smaller. Since there was a total of 84 turns for role B in the
nine consecutive sub-dialogues, the results in Fig. 5 indicated
that going through all nine sub-dialogues and restarting from
the first sub-dialogue was necessary for the testing simulated
learners here, which was also true for Fig. 4. Moreover, the
extra turns needed for the dashed curves compared to the solid
curves show the cost paid when the user decided to practice
the desired contents (sub-dialogues) that are different from the
way the policy was trained.
It is worth noting that the needed turns of considering uni-

tones plus intra-word bi-tones (red) were much higher than con-
sidering uni-tones plus inter-word bi-tones (green) (199.36 vs.
89.52 turns for solid curves). This is obviously because of the
well known tone sandhi phenomena in Mandarin Chinese, that
is, the tone pattern of a syllable is highly dependent on the tones
of the left and right context syllables if these syllables are within
the same word, but such context dependency of tone patterns
becomes much less observable across word boundaries. This is
very difficult for learners. By observing the scores for the real
learners, it is easy to find the scores for inter-word bi-tones are
usually better, while those for intra-word bi-tones are signifi-
cantly worse in average, because the tone sandhi within words
are much difficult to learn. The results in Fig. 5 show that such
situation was clearly reflected in the score vectors of the simu-
lated learners, and as a result was also illustrated in the policies
and the number of turns needed.
When we compare the solid blue curves between Fig. 4 and

5, we can notice that considering all 101 pronunciation units
converged at a much lower turn number (250.66. in Fig. 4) than
taking only the 58 Initial/Finals into account (365.60 in Fig. 5).
This seems to be difficult to understand. Analysis showed that
the occurrence frequencies of some low-frequency Initial/Finals
in the whole dialogue script were very low, despite that great
effort has been made to try to make the script as phonetically
balanced as possible. Therefore when a simulated learner had
bad performance on these low-frequency units, it might take
much more dialogue turns to reach the system goal (Fig. 5), i.e.
95% of all pronunciation units were produced with scores over
75 more than five times.When considering all 101 units (Fig. 4),
all the tone patterns were considered, most of which had much
higher occurrence frequencies, therefore the goal of 95% was
much more easier to achieve.

C. Learning Status and Policy Behavior for a Typical Example
Learner

Using the policy learned with the parameters chosen in
Section V-A ( , , , all 101 units, blue

Fig. 6. Statistical analysis for a typical example testing simulated learner. In
(a)(b) , all pronunciation units as listed in Table I (58 phonetic units on the left
half and 43 tone patterns on the right half) are sorted and shown accordingly
based on their average scores after finishing the sub-dialogues (1)–(3) (green
bar, left scale). Only one ID index as listed in Table I out of every five units are
shown on the horizontal axes. (a) percentage of extra practice (right scale) using
greedy method (purple curve) over those by random method (blue line) in the
next two sub-dialogues (4)(5), (b) percentage of extra practice using proposed
policy with MDP (red curve) over those with greedy method (purple line) in
the next sub-dialogues (4)(5), and (c) average scores of different sets of ill-
pronounced units (within black blocks of (a)(b)) after finishing sub-dialogues
(4)(5) using different approaches.

curve in Fig. 4), Fig. 6 shows how two straightforward heuristic
methods (random and greedy) and the proposed policy using
MDP offered practice opportunities for every pronunciation
unit for a typical example testing simulated learner when going
through the sub-dialogues (4) and (5) (a total of 18 turns) after
finishing the first three sub-dialogues (1)–(3). For this simulated
learner the terminal state was reached with dia-
logue turns. Listed on the horizontal axes in Fig. 6 are the 101
pronunciation units including Initial/Finals (left half) and tone
patterns (right half) by their ID indices as listed in Table I (only
1 out of 5 for the limited space), respectively sorted by their
average scores (represented by green bars based on the left
vertical scale) received by this simulated learner after finishing
the sub-dialogues (1)–(3). In Fig. 6(a), we first compare two
heuristic methods (greedy and random). The purple curve
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indicates the percentage of extra opportunities for practice
for each unit offered by the greedy method, as compared and
normalized to those offered by the random method represented
by the blue line or zero level (based on the right vertical scale).
Here the greedy method chose at each turn the sentence among
those available which has the most practice opportunities for
those units with average scores below 75, while the random
method simply made the choice randomly.
Since the policy goal of the proposed approach was for 95%

of the pronunciation units to be produced with scores above 75
over five times, we should focus on the units within the two
black blocks in Fig. 6(a), which are those with average scores
below 75. Clearly we can see from Fig. 6(a) the greedy method
resulted in much more practice opportunities than the random
method on most units within the black blocks (more than 70%),
although only 18 turns in sub-dialogues (4)(5) were considered.
These results show the effectiveness of the greedy method over
the randommethod, andwe expect the differencewould bemore
obvious if more dialogue turns were considered and at each di-
alogue turn more candidate sentences were available.
In Fig. 6(b), we further compare the proposed policy using

MDP represented by the red curve with the greedy method
represented by the purple line in exactly the same way as
in Fig. 6(a), except the purple curve for greedy method in
Fig. 6(a) is taken as the baseline for comparison and normal-
ization here and shown as a straight purple line (or zero level)
in Fig. 6(b). Notice that the greedy method chose the sentences
simply based on the practice opportunities among the next sen-
tence candidates, it was not able to look ahead over the future
dialogue paths. High counts of practicing opportunities for
some units in the next sentence do not imply the same for the
future. In contrast, the proposed policy with MDP has already
been trained to consider every possible dialogue path till the
terminal state using the approximation method mentioned in
Section III-F with huge number of simulated learners. Thus in
the two black blocks of Fig. 6(b) we can notice that even much
more practice opportunities on most units (almost 80%) were
offered by the proposed policy. Again we expect the difference
would be more obvious if given a dialogue script with more
dialogue turns and more candidate sentences available at each
dialogue turn. Note that in Fig. 6(b) the red curve is below
the zero level of the greedy method for most units (almost
50%) outside the two black blocks (their scores were above
75 so no further practices were needed), indicating that the
proposed policy focused properly on the poorly-pronounced
units. But this phenomenon is not seen in Fig. 6(a), in which
much of the purple curve representing greedy is above the
zero level of random for units outside the two black blocks,
or many units with scores above 75 were actually given more
practice opportunities, which is in fact useless. These results
verified that the proposed policy was efficient to provide better
personalized learning materials to the specific simulated learner
than hand-craft heuristic methods, either greedy or random.
Besides, we clearly see in Fig. 6 that each pronunciation

unit was given very different practice opportunities by various
methods. Take the phonetic unit /tz/ (green diamond, whose
score was below 75) for example. The greedy method provided
more practice than random, while the proposed policy using

MDP offered even much more. This is exactly the objective
here. On the other hand, however, there also existed some
difficult units, although very few. For example, both the greedy
method and the proposed policy with MDP gave less practice
opportunities than random method for the inter-word bi-tone
b45 (yellow star), whose score was also below 75. This is
probably because this unit appears with very low frequency in
the dialogue script (unit b45 is the tone pattern containing a
syllable of tone 4 before the word boundary with a syllable of
tone 5 after the word boundary, but tone 5 almost never appears
in the first syllable of a word except in mono-syllable words).
Even though the system noticed it was poorly-pronounced,
the system tended to choose the sentences that offered more
practice opportunities for other poorly-produced units and most
of them didn’t contain the unit b45. Hence the unit b45 was
somehow less focused by the MDP policy. This is also why the
present objective is only to have 95% of units receiving scores
above 75, or allowing for giving up 5% of low frequency units
that the MDP policy cannot take care of. The above examples
explain the difference between approaches on practice oppor-
tunities for different units.
It is also interesting to see in both Fig. 6(a) and (b) that most

of the tone patterns are within the black block while most of
the Initial/Finals are outside of the black block. This reflects the
behavior of the real learners for the data collected and used here,
i.e., tone patterns are often difficult for most real learners, while
most real learners are relatively good at the pronunciation of
many phonetic units.
To further investigate the effectiveness of three approaches

compared above with respect to different sets of pronunciation
units, we analyzed the average scores of those ill-pronounced
units in black blocks of Fig. 6(a)(b) after practicing with sub-di-
alogues (4)(5). The scores were estimated using the incremental
improvement model as mentioned in Section III-G, for which
more practice opportunities brought about better performance.
The results are in Fig. 6(c) respectively for phonetic units, tone
patterns and all (phonetic units plus tone patterns). Naturally the
outcomes in Fig. 6(c) are proportional to the results in 6(a)(b) in
all cases, indicating the proposed policy using MDP is more ef-
fective and efficient than the other two methods.

D. Focused Learning on Selected Subsets of Units

Sometimes learners may already know their pronunciation
status in advance and wish to focus their learning on a specific
subset of units using the dialogue game. We consider this in
two different scenarios: Using the policies learned with a larger
training target set, or using a policy specially trained focused
on the selected units. These show how the dialogue game could
be developed and utilized in different ways. For the first experi-
ment below, we assume the simulated learners decided to focus
on a smaller number of units that were randomly selected from
a larger set of target units, while the policy were trained using
larger set of target units. The scores of other units were com-
pletely ignored during testing.
Table II shows the number of dialogue turns needed averaged

over 100 simulated learners for such focused learning of 10, 20,
30 Initial/Finals (Part (A)), 5, 10, 15 tone patterns (Part (B)),
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TABLE II
NUMBER OF DIALOGUE TURNS NEEDED FOR FOCUSED LEARNING ON SUBSETS
OF RANDOMLY SELECTED SMALLER NUMBER OF PRONUNCIATION UNITS,
USING POLICIES TRAINED WITH A LARGER SET OF TARGET UNITS

and 10, 20, 30 Initial/Finals or tone patterns (Part (C)) respec-
tively, using the policies learned when considering all the 58
Initial/Finals, all the 43 tone patterns, or the complete set of 101
units. The results were tested by following the sub-dialogues in
either sequential order recursively (labeled “Sequential”) or in
arbitrary order (labeled “Arbitrary”).
From Table II we can see that a significant number of turns

were needed even if only 5 or 10 units were focused on. Also,
the policies became more efficient when more units were con-
sidered. This is obviously because the training utterances auto-
matically carried many different units for practice even if the
learner wished to focus on only a small number of them, so
trying to learn more units was in general more efficient. Also,
some low frequency units, if selected by the learner, might re-
quire more turns to be practice in the dialogue. This is probably
also the reason why in many cases in Table II the extra turns
needed for taking arbitrary order of sub-dialogues as compared
to the sequential order seemed to be relatively limited. On the
other hand, it is also interesting to notice that learning 10 tone
patterns required much more turns than learning 10 Initial/Fi-
nals (middle of Part (B) vs. top of Part (A)), obviously because
learning intra-word bi-tones were much more difficult as dis-
cussed previously, as reflected in the real learner data and the
simulated learners.
In the next experiment we assume the learners chose to focus

on a small set of units, say the Retroflexed units (the four Initials
/j/, /ch/, /sh/, and /r/), which are special in Mandarin Chinese
and usually difficult for many non-native speakers to learn and
pronounce. We trained a policy specifically focused on these
four Initials and then it was tested by 100 simulated learners
with different pronunciation performance on these Retroflexed
units. The red curves as shown in Fig. 7 are when the policies
were trained and tested both on the specific set of units. The
blue curves are exactly those in Fig. 5 when all 58 Initial/Finals
were considered for both policy training and testing, in both

sequential and arbitrary case for comparison. The red curves
show that the system policies which took the Retroflexed units
into consideration yielded promising performance.
All the above results demonstrate that the proposed frame-

work could provide personalized policies which were specially

Fig. 7. Learning curves for number of dialogue turns needed when policies
were trained and tested both on two specific set of units: all 58 Initial/Finals and
4 Retroflexed units in Mandarin Chinese respectively.

trained for each learner considering the personalized learning
goals such as focusing on a specific set of units.

E. Consideration for Different Learner Levels and Different
Native Language Backgrounds

Note that the policy in the proposed approach was trained
with simulated learners generated from real learner data. In
the initial experiments we had only very limited data, so we
used these data to construct a single learner simulation model
(GMM), from which all simulated learners generated are used
to train a single set of policy. The set of 278 real learners
described in Section II-B included beginner, intermediate
and advanced levels of learners with varying native language
backgrounds. All these varying learning levels and different
native language backgrounds were automatically reflected by
the different Gaussian mixtures in the learner generation model
described in Section III-G, so the single set of trained policy
is assumed to take care of learners with varying levels and
different native language backgrounds. The beginners will need
more number of turns to reach the system objective, while the
advanced learners may need much less. All the results regarding
the number of turns needed reported in above experiments are
actually the averages over large number of simulated learners,
and we may assume the distributions of the different levels
and different native language backgrounds for these simulated
learners were similar to those for the 278 real learners. On
the other hand, if more real learner data are available and can
be divided into different sets of data for different levels and
different native language backgrounds, it is certainly possible
to use the different sets of real learner data to build different
learner simulation models and in turn to train different sets
of policies for different levels of learners and different native
language backgrounds. Experiments on simulated and real
learners at different levels can then also be further tested based
on these policies. But these are out of the scope of this paper.
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Fig. 8. System architecture for the cloud-based system.

Fig. 9. The initial user interface of the real system.

VI. REAL SYSTEM IMPLEMENTATION

A. System Overview

Based on the framework proposed above, we have im-
plemented the dialogue game core engine as a cloud-based
system using NTU Chinese as the automatic pronunciation
evaluator. To provide good operability, the system is exposed
through REST API. Fig. 8 shows the system architecture. A
Node.js server accepts HTTP requests with a URL mapping to
the dialogue system service. The web server then passes the
HTTP requests including the parameters and voice signals to
the pedagogical dialogue manager. When the next sentence
for practice is selected by the dialogue manager, this selected
sentence is packed into a HTTP response and sent to the client.
User-specific data, such as the pronunciation scores and profile,
are stored in a separate database. In this way, developers can
further build applications on various platforms, such as a web
page, a mobile app or a flash game, using any HTTP library
that can issue the REST calls. .

B. Initial User Interface

Fig. 9 is the initial user interface of the real system for the
dialogue game illustrating the basic functionalities. The upper
left part shows the dialogue context, including recent dialogue
history alternating between the system and the learner. The last
sentence is the current sentence produced by the system. The
upper right section contains a set of next sentence candidates
for the learner to choose, in which the first choice including
Initial/Final/Tone for each syllable in the relatively larger blue
box is the sentence recommended by the policy, in contrast to
other sentences in black font. After the learner chooses and pro-
duces the utterance by clicking on the “Record” and “Send”
buttons in the middle left, the server responses by offering the

Fig. 10. On-line statistical analysis for the learning status: (a) Score distribu-
tion updated at each turn, (b) percentage of extra practice over random method
in past 10 turns (yellow curve, right scale) given score distribution 10 turns ear-
lier (gray/red bars, left scale), and (c) look-back analysis over the 10 past turns
along the dialogue path.

pronunciation evaluation results for the practiced utterance and
the next sentence candidates for selection. The evaluation re-
sults including the overall scores of the whole utterance and
those of each Mandarin syllable are shown in the bottom half of
the Fig., which includes evaluation details such as Initial/Finals,
tones, timing and emphasis. The learners can also listen to their
own pronunciation on the practiced sentence or that produced
by a language teacher by clicking “Play” button. Other kinds of
feedback such as descriptive judgments, corrective suggestions,
or animation showing the correct articulation are also provided
when needed.
By clicking on the “Statistics” button, the system offers on-

line statistical analysis on the learning status for all pronuncia-
tion units including Initial/Finals and tone patterns as shown in
Fig. 10. The average scores distributed over all pronunciation
units as shown in Fig. 10(a) (not completely shown) are updated
at each turn along with the dialogue progress. In Fig. 10 we as-
sume the learner wishes to focus on the Retroflexed units, so the
bars for those units are in red. Whenever the count of dialogue
turn exceeds 11 (e.g. at turn 15 in Fig. 10), the system starts to
look back and offer the extra Fig. in Fig. 10(b), that is, the per-
centage of extra practice opportunities compared and normal-
ized to the random method in the past 10 turns (e.g. turns 5-14
in Fig. 10) given the score distribution of 10 turns earlier (e.g.
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turn 5 in Fig. 10). Here we chose random method rather than the
greedy method mentioned in section 5.3, since the latter may
often result in over-emphasis on ill-pronounced units detected
by the system in early dialogue turns while ignoring the other
unseen units. In practical usage the random method may auto-
matically avoid this dilemma. Such look-back analysis along the
dialogue path continues at each turn as shown in Fig. 10(c). The
part of the yellow curve in the brown circle in Fig. 10(b) illus-
trates that the policy offered more opportunities on some of the
personally selected units (Retroflexed units here) than random
method in the last 10 turns (turns 5-14 here), and as a result the
scores of some of these units were improved as in Fig. 10(a) at
turn 15 compared to 10 turns before. Such on-line analysis in-
cluding updated scores and look-back analysis at each turn has
been successfully implemented in the real system.
.

VII. INITIAL TEST RESULTS FROM HUMAN LEARNERS
USING THE REAL SYSTEM

All the experimental results reported in Section V are based
on simulated learners. People may wonder if the results based
on simulated learners really reflect the situations for real human
learners. With the real system successfully implemented, we
were actually able to evaluate the effectiveness of the dialogue
game with real human learners. In the initial tests, we invited
two Mandarin Chinese learners to practice their pronunciation
using the working real system. Both subjects have Japanese as
their native language and have learned Mandarin Chinese for
2 years (intermediate level). They are not among the 278 real
learners participating in the construction of the real learner data
as mentioned in Section II-B. The experiment was conducted as
follows.
1) Both learners were asked to read 30Mandarin Chinese sen-
tences, which was the phonetically balanced and prosodi-
cally rich sentence set covering almost all frequently used
Mandarin syllables and tone patterns (used in Section II-B)
for constructing the read learner data. We then used NTU
Chinese as the pronunciation evaluator to obtain the ini-
tial scores of all the pronunciation units in every sentences
for both learners. For those pronunciation units appeared
more than once, we took the averages. All the 101 units
used here obtained their scores in this way.

2) The learners were asked to play with sub-dialogues (3)–(5)
twice.

3) The learners were asked to read the same 30 Mandarin
Chinese sentences (as in step 1) again, and we evaluated
their pronunciation scores in exactly the same way.

4) We compared the scores for all the pronunciation units be-
fore and after playing with the dialogue game.

From the results for all the 101 units for the two real learners,
in Fig. 11(a), we can see clearly the difference between the
scores after playing with the dialogue game system (orange
curves) and those before (blue bars) for both learners. Good
progress was made for most of the pronunciation units. The
trends for the two learners look somewhat similar, probably
because they both have Japanese as their native language.
Fig. 11(b) shows the average scores for each set of pronuncia-
tion units averaged from the two learners: Initials, Finals, tone

Fig. 11. (a) Detailed scores of the two human learners on all the 101 pronun-
ciation units (listed in the order of the ID indices in Table I, different from that
in Fig. 6) before and after playing with the dialogue game. (b) Average perfor-
mance of the two human learners on different sets of pronunciation units before
and after playing with the dialogue game.

patterns and all pronunciation units. We see good improve-
ments for Initials and Finals (also seen for units (1)-(58) in
Fig. 11(a)), probably because most Mandarin phonetic units
are not too difficult for Japanese native speakers, therefore the
dialogue game helped very well. The average improvement
for tone patterns was much less (also seen for units (59)-(101)
in Fig. 11(a)), obviously because the tone patterns are more
difficult for learners and playing with only a part of the
game twice may not be very useful. The overall improvement
achieved here in Fig. 11(a) and (b) seems very good for the
real learners playing with the sub-dialogues (3)–(5) twice only.
One possible reason may be that the two real learners already
have intermediate level of Mandarin, so learning may be easier
for them. Another possible reason may be that the 30 testing
sentences were exactly those used for constructing the real
learner data and generating the simulated learners for policy
training in Section II-B. Therefore all the unit co-existence
relationships between phonetic units, and tone patterns, and
all context relationships among units, were previously seen
somehow when training the system policy. Note that this set of
30 sentences was the only smallest phonetically balanced and
prosodically rich sentence set we had at the moment. These
results demonstrate that the approach and framework proposed
in this paper can help real learners improve their pronunciation.
Further user studies on real learners with different learning
levels and using different testing sentences can be conducted
in the future.
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VIII. CONCLUSION REMARKS

In this paper we presented a framework of recursive dialogue
game for personalized CAPT with an example of learning Man-
darin Chinese. A series of tree-structured sub-dialogues were
linked recursively as the script for the game. The policy was
to select the best sentence for practice at each turn during the
dialogue considering the learning status of the learner and the
future paths within the dialogue script. It was optimized by an
MDPwith a high-dimensional continuous state space of pronun-
ciation units and trained using fitted value iteration. A GMM
with BIC was proposed to construct learner simulation model
to generate simulated learners for training the MDP. A series of
experiments conducted in different ways of using the dialogue
game (sequential or arbitrary order of the sub-dialogues, aiming
for learning all pronunciation units or focusing on selected sub-
sets of units) showed very promising results and the effective-
ness of the proposed approach. The framework was also suc-
cessfully implemented as a real cloud-based system based on
NTU Chinese, which was tested by human learners and good
improvements were obtained.
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