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Abstract

In this paper we present the design and experimental re-
sults of a cloud-based personalized recursive dialogue
game system for computer-assisted language learning. A
number of tree-structured sub-dialogues are used sequen-
tially and recursively as the script for the game. The di-
alogue policy at each dialogue turn is optimized to of-
fer the most appropriate training sentence for every indi-
vidual learner considering the learning status, such that
the learner can have the scores for all selected pronuncia-
tion units exceeding a pre-defined threshold in minimum
number of turns. The policy is modeled as a Markov De-
cision Process (MDP) with high-dimensional continuous
state space and trained with a huge number of simulated
learners generated from a corpus of real learner data. A
real cloud-based system is implemented and the experi-
mental results demonstrate promising outcomes.
Index Terms: Computer-Assisted Language Learning,
Dialogue Game, Continuous State Markov Decision Pro-
cess, Fitted Value Iteration, Gaussian Mixture Model

1. Introduction
Computer-assisted language learning (CALL) systems
offer various advantages for language learning such as
immersive environment and corrective feedback during
the learning process. Thanks to the explosive develop-
ment of technology in recent years, high performance
computers, tablets and even smartphones are common
nowadays. It is convenient and useful to embed systems
into these devices. Also, The use of speech processing
technologies has been considered a good approach to pro-
vide effective assistance [1, 2, 3, 4, 5].

“Rosetta Stone” [6] and “byki” [7] are useful applica-
tions that provide multifaceted functions including pro-
nunciation evaluation and corrective feedback. However,
sentence-level practice lacks opportunities for language
interaction and an immersive language learning environ-
ment [8, 9]. Spoken dialogue systems [10, 11, 12, 13, 14]
are regarded as excellent solutions to provide language
interaction scenarios. Recently we presented a dialogue
game framework [15] in which proper training sentences

Figure 1: The script of the recursive dialogue game in
the restaurant scenario: starting from (1) Phone invitation
and (2) Restaurant reservation, after (9) Saying goodbye
returning to (1) for next meal.

at each dialogue turn are selected for each individual
learner during the interaction based on the learning status.
The dialogue framework was modeled as a Markov deci-
sion process (MDP) trained with reinforcement learning
[16, 17], and the learning status was based on NTU Chi-
nese [18], a Mandarin Chinese pronunciation evaluation
tool. One limitation of this framework is that the dis-
crete state representation was in short of full observation
of the learner’s learning status. Furthermore, its training
assumed a fixed number of dialogue turns; this is imprac-
tical and inflexible.

In a companion paper, we propose a new dialogue
game framework for language learning [19]. A number of
sub-dialogue trees are used sequentially and recursively.
The leaves of the last tree are linked to the root of the first
tree, making the dialogue paths infinitely long. At any di-
alogue turn there are a number of training sentences that
can be selected. The goal of the policy is to select the
training sentence at each dialogue turn based on the learn-
ing status of the learner, such that the learner’s scores
for all selected pronunciation units exceed a pre-defined
threshold in a minimum number of turns. The framework
is again modeled as an MDP, but here the MDP is real-
ized in a high-dimensional continuous state space for a
more precise representation of the learning status. This
framework has been successfully implemented under a
cloud-based environment and displayed on the iOS plat-
form. This paper presents the complete design and the
preliminary experimental results of this cloud-based dia-
logue game system.



2. Proposed recursive dialogue game
framework

2.1. Recursive dialogue game concept and frame-
work

The progress of the dialogue game is based on the script
of a series of tree-structured sub-dialogues cascaded into
a loop, with the last sub-dialogue linked to the first. In
preliminary experiments, the whole dialogue set contains
conversations between roles A and B — one the computer
and the other the learner. After each utterance produced
by one speaker, there are a number of choices for the
other speaker’s next sentence. Figure 1 shows the recur-
sive structure of the script in the restaurant scenario. In
all, nine sub-dialogues with 176 turns are used in the ex-
periments. The whole dialogue starts with the phone invi-
tation scenario, followed by restaurant reservation and so
on, all the way to the last sub-dialogue of saying good-
bye. After the last tree, the progress restarts at the first
phone invitation sub-dialogue again for the next meal.
This makes the dialogue continue infinitely. Figure 2 is
a segment of the sub-dialogue “Seating and meal order-
ing”, where A is the waiter and B the customer.

Since both the computer and the learner have multi-
ple sentence choices in each turn, every choice influences
the future path significantly; this results in a very differ-
ent distribution of pronunciation unit counts for the learn-
ers to practice. The dialogue policy here is to select the
most appropriate sentence for the learner to practice at
each turn considering the learning status, such that more
opportunities are given to practice poorly produced pro-
nunciation units along the dialogue path. In this way the
learner can achieve the goal of having the scores of all
pronunciation units exceed a pre-defined threshold in a
minimum number of turns. Also, they receive pronuncia-
tion performance feedback immediately after each utter-
ance pronounced.

The above recursive dialogue game is modeled by an
MDP with the desired optimal policy trained with the Fit-
ted Value Iteration (FVI) algorithm. A learner generation
model is developed to generate simulated learners from
real learner data to be used in the FVI algorithm.

The overall system block diagram of the proposed
framework is shown in Figure 3. Interaction between the
learner and the system involves Utterance Input from the
learner and Selected Sentences from the system. The Au-
tomatic Pronunciation Evaluator scores the performance
of each pronunciation unit in the utterance. These quan-
titative assessments are sent to the Pedagogical Dialogue
Manager, which is driven by the Sentence Selection Pol-
icy for choosing the next sentence for the learner. A set of
Real Learner Data is used to construct the Learner Simu-
lation Model, which generates the Simulated Learners to
train the Sentence Selection Policy based on the Script of
Cascaded Sub-dialogues using the Fitted Value Iteration

Figure 2: A segment of the dialogue script for the di-
alogue game example in a restaurant conversation sce-
nario.

Figure 3: System block diagram of the proposed recur-
sive dialogue game framework.

algorithm.

2.2. Simulated learner generation from real learner
data

The real learner data used in these experiments were col-
lected in 2008 and 2009. In total there were 278 Man-
darin Chinese learners at the National Taiwan Univer-
sity (NTU) from 36 countries with balanced gender, each
pronouncing 30 sentences selected by language teach-
ers. NTU Chinese, a Mandarin pronunciation evaluation
tool developed at NTU [18], was used as the Automatic
Pronunciation Evaluator in Figure 3. It assigned scores
from 0 to 100 to each pronunciation unit in every utter-
ance of the real learner data. The scores of each utter-
ance pronounced by a learner are used to construct a pro-
nunciation score vector (PSV), whose dimensionality is
the number of the pronunciation units considered. Every
component of the PSV is the average score of the corre-
sponding unit in the utterance; those units unseen in the
utterance are viewed as missing data and solved by the
expectation-maximization (EM) algorithm [20, 21]. The



PSVs from all utterances produced by all real learners are
used to train a Gaussian mixture model (GMM), here re-
ferred to as the Learner Simulation Model. This is shown
in Figure 4.

For MDP policy training, when starting a new dia-
logue game, we randomly select a Gaussian mixture com-
ponent as a simulated learner [22, 23, 24]. When a sen-
tence is to be pronounced, a randomly sampled PSV from
this mixture yields the scores for the units in this sen-
tence as the simulated utterance. Since the goal of the di-
alogue is to provide proper sentences for each learner un-
til their pronunciation performance for every unit reaches
a pre-defined threshold, we further develop an incremen-
tal pronunciation improvement model for the simulated
learners. Details about the simulated learners are in the
companion paper [19].

2.3. Markov decision process

A Markov decision process (MDP) [25] is a framework
that models decision making problems, represented by
the 5-tuple {S,A,R, T, γ}: the set of all states S , the set
of possible actions A, the reward function R, the Marko-
vian state transition function T , and the discount factor
γ which determines the effect of future outcomes on the
current state s. When an action a is taken at state s, a
reward r is received and the state is transmitted to new
state s′. Solving the MDP consists in determining an in-
finite state transition process called a policy that maxi-
mizes the expected total discounted reward from state s
(or value function) : V π(s) = E[

∑∞
k=0 γ

krk|s0 = s, π],
where rk is the reward gained in the k-th state transition,
and the policy π : S → A maps each state s to an ac-
tion a. The above value function can be further analyzed
by the state-action (Q) value function, which is defined
as the value of taking action a at state s : Qπ(s, a) =
E[

∑∞
k=0 γ

krk|s0 = s, a0 = a, π]. Thus, the optimal pol-
icy π∗ can be expressed as π∗(s) = argmaxa∈AQ(s, a)
by a greedy selection of the state-action pair. The goal of
finding the optimal policy is therefore equivalent to max-
imizing these Q functions.

2.4. MDP framework on dialogue game

We describe how the dialogue game is modeled using
MDP.

2.4.1. Continuous state space

The state represents the learner’s learning status. It con-
sists of the scores obtained for every pronunciation unit
given by the Automatic Pronunciation Evaluator in Fig-
ure 3, each a continuous value ranging from 0 to 100 and
directly observable by the system. This results in the
high-dimensional continuous state space s ∈ [0, 100]

U ,
where U is the total number of pronunciation units con-
sidered. In addition, as the system must determine which

Figure 4: Learner Simulation Model for simulated learner
generation.

dialogue turn the learner is in, the index of dialogue turn
t is also included in the state space.

2.4.2. Action set

At each state with dialogue turn t, the system’s action is
to select one out of a number of available sentence op-
tions for the learner to practice. The number of actions is
the number of next available sentences to be chosen for
the learner at the turn.

2.4.3. Reward definition

A dialogue episode E contains a sequence of state transi-
tions {s0, a0, s1, a1, ..., sK}, where sK represents the ter-
minal state. As mentioned, the goal here is to train a pol-
icy that can at each turn offer the learner the best selected
sentence to practice considering the learning status, such
that the learner’s scores for all selected pronunciation
units exceed a pre-defined threshold within a minimum
number of turns. Hence every state transition is rewarded
−1 as the penalty for an extra turn (rk = −1, k ≤ K−1),
and rK is the finishing reward gained when the termi-
nal state sK is reached, where scores of all pronunciation
units reach a certain threshold. The final return R is then
the sum of the obtained rewards: R =

∑K
k=0 rk. In addi-

tion, a timeout count of state transitions J is used to limit
episode lengths.

2.4.4. Fitted value iteration (FVI) algorithm

For the high-dimensional continuous state space, we use
the function approximation method [26, 27, 28] to ap-
proximate the exact Q value function with a set ofm basis
functions:

Q(s, a) =

m∑
i=1

θiφi(s, a) = θTφ(s, a), (1)



Figure 5: System architecture of the cloud-based system.

where θ is the parameter (weight) vector corresponding to
the basis function vector φ(s, a). The goal of finding the
optimal policy can then be reduced to finding the appro-
priate parameters θ for a good approximation Q̂θ(s, a)
of Q(s, a). A sampled version of the Bellman backup
operator B̂ is introduced for the i-th sampled transition
(si, ai, ri, s

′
i) as

B̂(Q(si, ai)) = ri + γmax
a∈A

Q(si
′, ai). (2)

With a batch of transition samples {sj , aj , rj , s′j |j =
1, ..., N}, least-squares regression can be performed to
find the new parameter vector θn at the n-th iteration so
that Q̂θn(s, a) approaches Q(s, a) as precisely as possi-
ble. The parameter vector is updated as

θn+1 = arg min
θ∈RM

N∑
j=1

(Q̂θn − B̂(Q(sj , aj))
2
+
λ

2
‖θ‖2,

(3)
where the second term is the 2-norm regularized term de-
termined by λ to prevent over-fitting.

3. Cloud-based system design and
implementation

3.1. System overview

We have implemented the Mandarin Chinese dialogue
game core engine as a cloud-based system. To provide
good operability, the system is exposed through REST
API. Figure 5 shows our system architecture. A web
server accepts HTTP requests with a URL mapping to our
dialogue system service. The web server then passes the
HTTP request including the parameters and translates the
request into a corresponding voice signal call to the ped-
agogical dialogue manager. After the next sentence for
practice is selected by the dialogue manager, this selected
sentence is packed into a HTTP response. User-specific
data, such as pronunciation scores and profile, are stored
in a separate database. In this way, developers can build
applications for various platforms, such as a web page or
a mobile app or a flash game, using any HTTP library that
can issue the REST calls.

Figure 6: An example view of our designed system inter-
face.

3.2. Initial user interface

Figure 6 is the initial user interface of our dialogue game
showing the fundamental functionalities. The left part
shows the dialogue progress, which alternates between
the waiter and the customer. The last two sections are the
current sentence produced by the waiter (system) and the
sentence candidates for the customer (learner) to choose,
while the other sections list the past sentences spoken.
The “Hide/Show” button on the upper right switch off/on
the display of the past sentences. The customer chooses
to produce one sentence by clicking on the “Start Record-
ing” button. Note that there is a “BEST CHOICE” la-
beled on one sentence candidate of the customer, it is
the one recommended by the optimized sentence selec-
tion policy mentioned above. In addition, by clicking on
the blue “play” icon we can listen to the sentence spo-
ken by the waiter again. When clicking on the “analy-
sis” icon on the past sentences of the customer, the sys-
tem shows the evaluation result of each unit within the
selected sentence, which is shown on the right part. The
evaluation result indicates the pronunciation performance
on the whole utterance and on each Mandarin syllable,
including scores of Initial/Finals, tone, timing and em-
phasis. This offers detailed assessment of the learner’s
pronunciation.

The complete cloud-based system has been success-
fully implemented and operated in real time. It is also
submitted to the demonstration session of SLaTe 2013
[29].

4. Experiments
4.1. Experimental Setup

Experiments were performed on the complete script of
nine sub-dialogue trees for Mandarin Chinese learning
as described in Section 2.1. The results below are for
the computer as role A and the learner as role B. Totally
82 Mandarin pronunciation units including 58 phonetic
units (Initial/Finals of Mandarin syllables) and 24 tone



patterns (uni/bi-tone) were considered, and three cases
were tested: learning tone patterns only, phonetic units
only, and both. NTU Chinese [18] was used as the auto-
matic pronunciation evaluator for unit scoring and imme-
diate feedback for the learners. In the MDP setting, the
terminal state sK was defined as the situation that all pro-
nunciation units considered were produced with scores
over 75 more than eight times. The reward at the dia-
logue terminal state rK was set to 300 and timeout count
J was 500. Multivariate Gaussian functions of 82 dimen-
sions served as the basis function φ(s, a) in (1) to repre-
sent the Q value function. The number of the basis func-
tions was set 5, and these Gaussian functions were spread
evenly on the state space. The system’s initial policy was
always to choose the first sentence among the candidate
sentences. Five-fold cross-validation was used: in each
training iteration, four-fifths of the real learner data were
used to construct the GMM to generate simulated learners
for policy training, while the rest was saved for another
GMM to generate simulated learners in the testing phase.
In our work, the MDP testing result was the average of 50
testing simulated learners. Also, Bayesian information
criterion (BIC) [30, 31] was employed on GMM to bal-
ance the model likelihood and parameter complexity. In
the experiment, simulated learners were generated to go
through the nine sub-dialogue trees in either sequential
and recursive order or arbitrary order until the terminal
state sK was reached.

4.2. Experimental Result

4.2.1. Number of dialogue turns needed

In Figure 7, we plot the number of turns needed to reach
the terminal state as a function of the number of train-
ing iterations. Clearly the three solid curves (labeled
“Sequential”) for different sets of target units considered
yielded promising results. The number of needed turns
for learning tone patterns alone, phonetic units alone, and
both converged at 179.88, 203.42, 215.58 turns respec-
tively. Clearly as the number of target units is smaller,
the needed turns is smaller. Note that the needed turns of
considering phonetic units alone (203.42) is only slightly
smaller than considering both phonetic units and tone pat-
terns (215.58), while that of considering only tone pat-
terns (179.88) is much smaller. Different sets of pronun-
ciation units are presented in the training sentences in any
case with different distributions. The above results indi-
cate that when considering only phonetic units, the prac-
tice may cover many tone patterns as well. That is to say,
considering a set of units together as target learning units
at a time may result in less total number of training sen-
tences than considering the same set of units in separated
times. In addition, since there were 84 turns in all for
role B in the nine consecutive sub-dialogues, the results
indicated that going through all nine trees and restarting

Figure 7: Number of dialogue turns needed with respect
to different number of training iterations.

from the first sub-dialogue was necessary for the testing
simulated learners here.

The dashed curves (labeled “Arbitrary”) show the re-
sults of using the nine sub-dialogue trees in a different
scenario, in which the learner chose to practice the sub-
dialogue trees in an arbitrary order. For example, the
learner could jump to sub-dialogue four after finishing
sub-dialogue two (after restaurant reservation, the learner
wishes to learn how to order meals first). The same three
cases (tone patterns only, phonetic units only, and both)
tested in this scenario converged at 210.16, 233.64, and
256.82 turns respectively as shown in Figure 7. The extra
turns needed compared to the sequential order scenario
shows the trade-offvbetween the user’s free will to inter-
act with the dialogue game and the dialogue turns needed
to learn all target units well enough.

4.2.2. Focused learning for specific sets of pronunciation
units

From section 4.2.1 we learned the effectiveness of the
system policy. The system provided personalized pro-
nunciation unit practice as efficient as possible to each in-
dividual learner. However, some language learners might
already know their pronunciation status in advance and
wished to focus their learning on a specific set of units
using the dialogue game system. We therefore would
like to test the learned policies considering different tar-
get units as discussed in section 4.2.1. In the experiments
below, the simulated learner selected certain number of
units randomly as the units to be focused on while ignor-
ing the scores of all other units.

Table 1 shows the dialogue turn needed for focused
learning of 10 tone patterns (row(1)), 20 phonetic units
(row(2)), and 20 phonetic units or tone patterns (row(3))
using the policies learned in section 4.2.1 respectively,
either following the sub-dialogue trees sequentially (la-
beled “’Sequential’) or in arbitrary order (labeled “’Ar-
bitrary’). Each result is the average over 100 simulated
learners. This shows different ways of utilizing the dia-



Table 1: Number of dialogue turns needed for focused
learning on a specific number of pronunciation units.

Target units Number of Number of
units focused turns needed

(1) Tone patterns 10 Sequential 140.28
Arbitrary 159.77

(2) Phonetic units 20 Sequential 173.53
Arbitrary 205.09

(3) Phone + Tone 20 Sequential 179.11
Arbitrary 209.16

logue game developed here.
From Table 1 we can see that a significant number

of turns were needed even if only 10 units are focused
on, but the policy became more efficient when more units
were considered. This is obviously because the training
utterances automatically carried many different units for
practice even if the learner wished to focus on a small
number of them. Also, some low frequency units, if se-
lected by the learner, may require more turns to be prac-
tice in the dialogue.

5. Conclusions
We presented a cloud-based recursive dialogue game with
an optimized policy offering personalized learning mate-
rials for CALL. A series of recursive tree-structured sub-
dialogues are used as the script for the game. The policy
is to offer the proper sentence for practice at each turn
considering the learning status of the learner. It was op-
timized by an MDP with a high-dimensional continuous
state space and trained using fitted value iteration. The
cloud-based system has been successfully completed and
operated in real time. Experimental results of sequential
and arbitrary order usage showed promising results and
the effectiveness of the proposed approach.
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