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Abstract

Modelling dialogue management as a reinforcement learning task enables a system

to learn to act optimally by maximising a reward function. This reward function is

designed to induce the system behaviour required for goal-oriented applications,

which usually means fulfilling the user’s goal as efficiently as possible. However,

in real-world spoken dialogue systems, the reward is hard to measure, because the

goal of the conversation is often known only to the user. Certainly, the system can

ask the user if the goal has been satisfied, but this can be intrusive. Furthermore, in

practice, the reliability of the user’s response has been found to be highly variable.

In addition, due to the sparsity of the reward signal and the large search space,

reinforcement learning-based dialogue policy optimisation is often slow. This thesis

presents several approaches to address these problems.

To better evaluate a dialogue for policy optimisation, two methods are proposed.

First, a recurrent neural network-based predictor pre-trained from off-line data

is proposed to estimate task success during subsequent on-line dialogue policy

learning to avoid noisy user ratings and problems related to not knowing the user’s

goal. Second, an on-line learning framework is described where a dialogue policy

is jointly trained alongside a reward function modelled as a Gaussian process with

active learning. This mitigates the noisiness of user ratings and minimises user

intrusion. It is shown that both off-line and on-line methods achieve practical policy

learning in real-world applications, while the latter provides a more general joint

learning system directly from users.

To enhance the policy learning speed, the use of reward shaping is explored and

shown to be effective and complementary to the core policy learning algorithm.
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Furthermore, as deep reinforcement learning methods have the potential to scale to

very large tasks, this thesis also investigates the application to dialogue systems.

Two sample-efficient algorithms, trust region actor-critic with experience replay

(TRACER) and episodic natural actor critic with experience replay (eNACER),

are introduced. In addition, a corpus of demonstration data is utilised to pre-

train the models prior to on-line reinforcement learning to handle the cold start

problem. Combining these two methods, a practical approach is demonstrated

to effectively learn deep reinforcement learning-based dialogue policies in a task-

oriented information seeking domain.

Overall, this thesis provides solutions which allow truly on-line and continuous

policy learning in spoken dialogue systems.
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CHAPTER 1

Introduction

A spoken dialogue system (SDS) allows human-computer interaction using natural

language and speech. However, since human-computer interaction differs from

natural human conversation, teaching a machine to understand and converse is

non-trivial and challenging. This study encloses a broad spectrum of research

fields such as computational linguistics, engineering design, behaviour learning,

and artificial intelligence. This chapter starts with an overview of an SDS and

its existing limitations and then presents the contributions and a roadmap of this

dissertation.

1.1 Overview

Research into SDSs is regarded by many as one of the most challenging and long-

term tasks. In his imitation game (Turing, 1950), Turing attempted to define the

standard of ‘intelligence’ for a machine by asking if a human participant could

differentiate it from a human through conversation. He also suggested that an

intelligent machine should simulate the learning process of a human child. This

idea has a close connection to the modern machine learning techniques used to

build an SDS.

The development of SDSs has been greatly improved since the concept was

established. An early computer programme called ELIZA (Weizenbaum, 1966)
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was created in the 60’s, which imitated the language of a psychotherapist with

simple word reordering and convinced some people to mistake her for a human.

With the recent theoretical advances and improvement in practical deployment,

the possibility of talking naturally to machines becomes much more plausible.

Depending on the purpose, an SDS can be broadly divided into two categories:

chat-oriented systems which aim to converse with users and provide reasonable

contextually relevant responses, and task-oriented systems which assist users to

achieve specific goals (e.g. find hotels, movies or bus schedules). A chat-oriented

SDS is expected to talk about everything in an open domain setting. It is not necessary

to have a well-defined goal or intention. Conversations on social media platforms

such as Facebook, Twitter and Reddit are typically categorised in such scenarios.

However, the potentially infinite number of topics and language variation are the

bottlenecks to creating reasonable responses. The challenge of such systems centres

on maintaining a reasonable conversation similar to talking to a rational person.

On the other hand, the task-oriented SDS typically operates in a closed domain

setting where the possible inputs and outputs are restricted since the system aims

to achieve a very specific goal. It is typically designed according to a structured

ontology (or a database schema) which defines the domain that the system can talk

about. When talking to these systems, the users often have a clear goal in mind

and do not expect the system to handle all cases. This type of SDS can be found

in many practical applications, such as call centres and help desks which answer

basic questions from customers (Georgila et al., 1998; Lowe et al., 2015), website

navigation tools (Chai et al., 2001), pedagogical agents which assist learners to

improve their problem solving and language skills (Su et al., 2013, 2015c), interactive

games which engage players in situated scenarios (Zielke et al., 2009), and modern
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intelligent personal assistant software such as Apple’s Siri 1, Amazon Echo 2,

Google Assistant 3, Microsoft Cortana 4, Facebook M 5 and Slack 6.

Deploying such automated agents can significantly reduce human labour costs.

Hence, SDS has great potential and is fascinating for both academia and indus-

try. However, despite its many benefits, existing SDSs are far from perfect. Most

commercial systems still utilise human-designed dialogue flow charts to handle

all of the use cases, which are hard to maintain and hard to scale to larger do-

mains. To mitigate this, data-driven techniques and machine learning algorithms

have been exploited and proved to be promising for improving robustness and

extendibility of spoken dialogue technology (Young et al., 2013b). The goal is

to build a fully statistical SDS with robust spoken language understanding and

generation capability and automate the design and planning of each system reply

in a dialogue. This thesis focuses on task-oriented systems and uses an example

application of tourist information seeking, where users of the system can search for

and ask about venues like restaurants in a town according to their constraints (e.g.

by price-range or cuisine type). The long-term goal of this research direction is to

develop an end-to-end statistical framework that robustly learns from and interacts

with human users.

1.2 Motivation

An SDS is typically built upon various components: a speech recogniser, a spoken

language understanding module, a dialogue manager, a language generator, and a

speech synthesiser. This thesis is concerned broadly with the design of a dialogue

manager which determines the system response at each turn. More specifically,

1http://www.apple.com/ios/siri/
2http://www.amazon.com/oc/echo
3https://assistant.google.com/
4https://www.microsoft.com/en-us/windows/cortana
5https://www.wired.com/2015/08/facebook-launches-m-new-kind-virtual-assistant/
6https://slack.com/apps/category/At0MQP5BEF-bots



4 Introduction

Fig. 1.1 An example of a task-oriented dialogue with a pre-defined task and the
evaluation results.

the main focus is on determining a suitable learning signal from humans, a reward,

and making the best use of it for learning a real-world dialogue manager on-line

with human users. Generally, a ‘reward’ from the human can be determined

in numerous ways, including by voice/language, facial expression, or numerical

ratings. Here the focus is on human ratings.

The development of a statistical dialogue manager involves data collection

and model training. In a task-oriented setting, the collection of human-machine

conversation often conforms to a pre-defined task as shown in the left part of Figure

1.1. This objective defines a clear goal for the system to reach and clear evaluation

metric for measurement. In this scenario, the recruited subjects are given a specific

task to follow. The collected data are further used to train the model to either

’mimic’ the human responses via supervised learning (Bordes et al., 2017; Wen et al.,

2017a) or plan its own dialogue flow using reinforcement learning (RL) (Sutton

and Barto, 1999). However, since the users may have (slightly) different goals in

their minds and their satisfaction rating may be unreliable, the objective evaluation

results according to the task may not match the subjective rating from the user.

Figure 1.1 illustrates an example of the mismatch between the two measurements.

Here the user did not ask for the phone information and thought the dialogue was
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successful as the system answered all concerns. On the other hand, this task was

not completed according to the description, because the phone number slot was not

marked. This mismatch hinders system performance, as the conversational data is

inconsistent with the labels. In addition, this label is often sparse, because it is set

as an overall evaluation only when the dialogue ends; this requires the learning

system to explore more until it finds the (sub-)optimal solutions. To summarise,

the two main challenges of reward setting in statistical dialogue management are

as follows:

1. precisely determining the ‘goodness’ of the human-machine interaction.

2. efficiently exploiting the (sparse) reward signal to increase the speed of the

learning process.

In addition, the current state-of-the-art methods such as the Gaussian process

(GP)-based RL policy are mainly non-parametric and do not scale well. In contrast,

deep RL methods offer the potential to scale to very large tasks but have several

problems: slow learning and poor performance in the early stages of training (cold

start). To summarise, this thesis has two main emphases: designing efficient and

robust reward estimation and improving the learning speed of deep RL methods.

This thesis explores these issues and presents solutions to address them.

1.3 Contributions and Outline

The dissertation is organised as follows:

• Chapter 2 - Overview of Spoken Dialogue Systems

The general concepts and architecture of an SDS are described in this chapter,

with detailed descriptions of each component.

• Chapter 3 - Dialogue Policy Optimisation and Reward Estimation

This chapter reviews background knowledge and summarises related works
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on dialogue policy optimisation and reward estimation, with a specific focus

on RL approaches. The benefits and current challenges of these works are

enumerated, which leads to the work presented in the following chapters to

address the problems.

• Chapter 4 - Policy Learning with Off-line Reward Estimator

This chapter investigates the use of a RNN model to infer the dialogue success

information from an off-line corpus. The resulting reward model enables

practical policy learning with real users without checking the task information

in a tourist information seeking domain. The proposed model is also extended

to scale beyond one domain by making the model and corresponding input

features domain-independent. Part of the research work has been presented

in the following publications (Su et al., 2015a; Vandyke et al., 2015):

– P.-H. Su, D. Vandyke, M. Gašić, D. Kim, N. Mrkšić, T.-H. Wen, and S.

Young, “Learning from Real Users: Rating Dialogue Success with Neural

Networks for Reinforcement Learning in Spoken Dialogue Systems”. In

Proc of INTERSPEECH 2015.

– D. Vandyke, P.-H. Su, M. Gašić, N. Mrkšić, T.-H. Wen, and S. Young,

“Multi-Domain Dialogue Success Classifiers for Policy Training”. In Proc

of ASRU 2015.

• Chapter 5 - Policy Learning with On-line Active Human Reward Estimator

This chapter proposes an on-line learning framework whereby the dialogue

policy is jointly trained alongside the reward model via active learning with a

GP model. This GP operates on a continuous space dialogue representation

generated in an unsupervised fashion using a RNN encoder-decoder. The

experimental results demonstrate that the proposed framework can signif-

icantly reduce data annotation costs and mitigate noisy user feedback in

dialogue policy learning. Some of these contributions have been presented in

the following publication (Su et al., 2018, 2016b):
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– P.-H. Su, M. Gašić, N. Mrkšić, L. Rojas-Barahona, S. Ultes, D. Vandyke,

T.-H. Wen, and S. Young, “On-line active reward learning for policy

optimisation in spoken dialogue systems”. In Proc of ACL 2016. (Best

Student Paper)

– P.-H. Su, M. Gašić, and S. Young, “Reward Estimation for Dialogue

Policy Optimisation”. In Computer Speech and Language 2018.

• Chapter 6 - Accelerating Policy Learning with Reward Shaping

The sparse nature of reward in RL slows down learning since many interac-

tions are needed before getting any reward. This chapter explores the use of

reward shaping to enrich the intermediate reward during the dialogue to speed

up learning. The experiment shows that the learning speed increased whilst

maintaining similar performance. This research work has been presented in

the publication (Su et al., 2015b):

– P.-H. Su, D. Vandyke, M. Gašić, N. Mrkšić, T.-H. Wen, and S. Young,

“Reward Shaping with Recurrent Neural Networks for Speeding up On-

Line Policy Learning in Spoken Dialogue Systems”. In Proc of SIGDIAL

2015.

• Chapter 7 - Learning Sample-efficient Deep RL Policies

Deep reinforcement learning methods have significant potential for dialogue

policy optimisation. However, they suffer from slow learning speed and

poor performance in the early learning stages. This chapter first explores

the use of experience replay with off-policy learning to enrich the update

information (with a batch of data) to the models and combines it with two

better gradient update methods: trust region optimisation (TRACER) and

natural gradient descent (eNACER). Second, to mitigate the cold start issue,

a corpus of demonstration data is utilised to pre-train the models prior to

on-line RL. Combining these two approaches, a practical approach to learn
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deep RL- based dialogue policies is presented. This research work has been

published as international papers (Casanueva et al., 2017; Su et al., 2016a,

2017):

– P.-H. Su, M. Gašić, N. Mrkšić, L. Rojas-Barahona, S. Ultes, D. Vandyke,

T.-H. Wen, and S. Young, “Continuously learning neural dialogue man-

agement”. In arXiv preprint 2016.

– P.-H. Su, P. Budzianowski, S. Ultes, M. Gašić, and S. Young, “Sample-

efficient Actor-Critic Reinforcement Learning with Supervised Data for

Dialogue Management”. In Proc of SIGDIAL 2017.

– I. Casanueva*, P. Budzianowski*, P.-H. Su*, N. Mrkšić, T.-H. Wen, S.

Ultes, L. Rojas-Barahona, S. Young, and M. Gašić,“A Benchmarking

Environment for Reinforcement Learning Based Task Oriented Dialogue

Management”. In NIPS Deep Reinforcement Learning Symposium 2017.

• Chapter 8 - Conclusions

Concluding remarks of the main contributions are summarised in this chapter

with several potential directions and extensions.

In summary, the thesis contribution is divided into two main sections. Chapters

4 and 5 focus on building a robust reward model to learn the dialogue policy from

human users. Chapters 6 and 7 focus on enhancing the learning efficiency of the

dialogue policy.



CHAPTER 2

Overview of Spoken Dialogue Systems

A spoken dialogue is a conversational exchange between two or more people where

the primary medium is speech. To simplify the task, two assumptions are made.

First, a dialogue involves only two participants. Second, the dialogue consists of a

sequence of turns, where each turn includes an utterance from both participants

with fixed order.

The architecture of an SDS has not been standardised. Nevertheless, most

systems follow the pipeline design demonstrated by Pieraccini and Huerta (2005),

which is illustrated in 2.1. The details of each component are described in the

following sections.

Fig. 2.1 The pipeline architecture of a spoken dialogue system.
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2.1 Automatic Speech Recognition

The automatic speech recognition (ASR) component transcribes the audio signal

into written form output. This output is generally represented as an N-best list of

the most probable sentences, or as a word lattice (or confusion network in a more

restricted form Mangu et al. (2000)) formed in a directed graph where each edge

has a word and its associated weight allows the path probability to be calculated.

In this work, an ASR system generating an N-best list is adopted. This is discussed

more in the following sections.

Most ASR systems consist of an acoustic model, a language model (LM), and

a lexicon. These are inputted with a raw audio signal or a pre-processed feature

vector, such as Mel frequency cepstral coefficients (MFCCs). The acoustic model

computes the most probable sequence of phonemes, the basic units of speech,

which best represent the input vectors. This phoneme sequence is then mapped

to texts using a lexicon. One popular model is the hidden Markov model (HMM),

where the state probabilities are modelled with a Gaussian mixture model (GMM).

A comprehensive overview is presented in Gales and Young (2008). A more recent

line of research has concentrated on the use of neural networks to replace the

GMM and the approaches now represent the state-of-the-art (Dahl et al., 2012;

Deng et al., 2013; Hinton et al., 2012; Waibel et al., 1989). On the other hand,

the LM provides linguistic constraints to help the selection of correct words, and

such models are traditionally implemented using n-gram models (Brown et al.,

1992) or more recently with neural networks (Bengio et al., 2003; Chen et al., 2016;

Jozefowicz et al., 2016; Mikolov et al., 2010).

To simplify the deployment process, current research is focussed on End-to-end

ASR, aiming to combine the acoustic model and LM using RNNs (Bahdanau et al.,

2016; Chan et al., 2016; Graves et al., 2013b; Hannun et al., 2014).
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2.2 Spoken Language Understanding

Having converted the speech signal into words, the spoken language understanding

(SLU) module aims at determining the underlying semantics of the utterance.

SLU broadly covers the research of domain detection, intent determination (Tur

and Deng, 2011; Xu and Sarikaya, 2013), and slot filling (Chen et al., 2013; Mesnil

et al., 2015a). In dialogue research, the semantics are typically represented in the

form of a dialogue act1. For instance, the utterance:

‘I plan to stay at a hotel in the city centre tonight and price is not my concern.’

can be formed as:

inform(area=centre,price=dontcare,type=hotel).

This form captures the intent of the sentence, action=inform, meaning that the

user provides certain information, the actual slot-value pairs which specify the

arguments of the act: area=centre,price=dontcare, and the domain: type=hotel.

Note that this is an example of a flat-structural representation. Depending on the

design of the ontology and application, there are more ways to represent a sentence

such as relation-based semantic representation (Harispe et al., 2014) , which has

richer structured concepts. This type of representation is closely related to the logic

form in computational linguistics and general artificial intelligence. In this thesis,

only limited domains are considered, hence flat dialogue acts are used. This form

is also used as the conceptual representation of the output from the dialogue policy

component in 2.4.

The simplest and most straightforward method to extract the meaning from a

sentence is to design a set of rules that map from words or phrases to the concepts,

called rule-based semantic grammars (Ward, 1994; Zue et al., 2000). However, these

rules need to be expanded or re-designed when the domain coverage is changed;

thus, it is not scalable. For more complex sentences with richer linguistic variations

and ambiguities, more advanced techniques such as the use of context-free gram-
1Dialogue acts are a special form of speech act (Searle, 1969), representing the meaning of an

utterance.
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mars (CFG) (Charniak, 1997; Kwiatkowski et al., 2011; Zettlemoyer and Collins,

2012), methods that rely on inductive logic programming (Zelle and Mooney, 1993),

or dependency parsing trees (Chen and Manning, 2014; Jurafsky and Martin, 2008;

Nivre et al., 2007) have been investigated.

Statistical approaches to language understanding require a set of training data

and their corresponding labels (Raymond and Riccardi, 2007). Most common

labels are word level (aligned) or entire sentence level (unaligned). The Air Travel

Information System (Price, 1990) is one of the commonly used datasets containing

both aligned and unaligned labels for evaluating model performance. Widely

known statistical models include generative approaches such as dynamic Bayesian

network (DBN) (He and Young, 2006), discriminative models such as support vector

machine (SVM) (Kate and Mooney, 2006), conditional random fields (CRF) (Jeong

and Lee, 2008; Lafferty et al., 2001), and more recently neural network approaches

(Hermann et al., 2015; Kalchbrenner et al., 2014; Mesnil et al., 2015a; Yao et al.,

2014). When embedded in a pipelined SDS, the impact of SLU on the downstream

performance has also been investigated (Li et al., 2017).

2.3 Dialogue State Tracking

A dialogue essentially comprises a sequence of interactions. It is, therefore, im-

portant to consider the previous context information and the current observation

(either ASR or SLU output) from the user at any point of the conversation to

determine what the user is talking about. The Markovian representation which

summarises the current state of the dialogue is called the dialogue state. In contrast

to standard SLU tasks which operate on single-turn decoding, the task of dialogue

state tracking (DST) centres on the multi-turn determination of the user’s intention.

Probabilistic models often maintain a belief state, which is the distribution over all

dialogue states (Rapaport, 1986).
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Dialogue State Tracking (Henderson, 2015; Williams et al., 2016) has been

intensively investigated by various research groups in recent years. It can be

best shown by the five completed series of dialogue state tracking challenges

to date (Henderson et al., 2014a,b; Kim et al., 2017, 2016; Williams et al., 2013).

The challenges cover a wide spectrum of DST tasks, from single and multiple

domain human-machine interactions, goal-changing scenarios, and human-human

conversations.

Approaches to address this problem are generally similar and closely related

to the methods for SLU tasks, including simple rule-based and statistical methods.

The former utilises hand-crafted rules to update the dialogue state given the output

from the SLU component (Wang and Lemon, 2013), and the latter learns these

rules from the given data. Early statistical models employed generative models

such as DBN to jointly model the current observations from SLU outputs and

the dialogue state (Young et al., 2007), Bayesian update of dialogue state (BUDS)

(Thomson et al., 2008) was one specific example. Later, discriminative models,

which aim to calculate the conditional probability of the belief state given the

dialogue history, have been found to generally outperform generative methods.

Log-linear models such as maximum entropy linear model (Lee and Eskenazi, 2013;

Williams, 2014) and CRF (Ren et al., 2013) have been shown to be effective in this

task. Recently, neural networks have also been applied and achieved state-of-the-art

results (Henderson et al., 2014c; Kadlec et al., 2014; Mrkšić et al., 2015, 2017; Perez

and Liu, 2016).

In this work, the BUDS dialogue state tracker (Thomson and Young, 2010) is

mainly adopted.

2.4 Dialogue Policy

Once the user’s intention has been determined, the system must choose an appro-

priate reply. Serving as the first component for the system response as shown in the



14 Overview of Spoken Dialogue Systems

bottom right of Figure 2.1, the dialogue policy component controls the interaction

between the system and the user and is central to the overall quality of the user

experience. Its behaviour is determined by a dialogue policy, which maps the belief

states (or dialogue state) to system actions.

To manage the dialogue interaction, the simplest approach is to hand-craft the

dialogue flow. In this case, expert knowledge is usually utilised and the overall

dialogue flow is formed in a tree-structured (or a finite state) format (Larsson

and Traum, 2000; McTear, 1998; Sutton et al., 1996). However, this approach

requires a large amount of human effort and needs further modification when

new information which changes the domain’s ontology and dynamic is added.

In addition, the uncertainty created by noisy ASR and SLU often leads to a poor

DST result, which brings the system to an incorrect state and causes it to react

incorrectly and potentially generate an unreasonable system response.

It has, therefore, been suggested in recent years that statistical methods (Daubigney

et al., 2012a; Gašić et al., 2014; Keizer et al., 2010b; Lemon and Pietquin, 2007) can re-

solve the shortcomings introduced by handcrafted approaches. Probabilistic models

allow the uncertainty in the system’s belief state to be mapped into a distribution

over sets of system action. This improves the robustness and error recovery ability

of the system under various noisy conditions. A dialogue policy could be cast as a

classification task, where a set of corpus data is provided for the system to train

on. In this approach, the system learns to select an action given the statistics of

the particular state-action pairs in the corpus. Nevertheless, the corpus dataset

often lacks sufficient coverage of all possible situations and the perfect imitation

on the given corpus does not necessarily lead to a successful dialogue interaction.

Thus, it is more adequate to view the dialogue interaction as a long-term planning

task and optimise its action selection policy to achieve a higher success rate. To

automatically obtain such policies, RL is often utilised.

When modelling the dialogue policy with RL approaches, the goal of the model

is to select a sequence of system replies (actions) given the observed belief states to
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maximise the total reward; in this work, the reward is mainly determined by the

dialogue success. If only the top hypothesis from the DST component is presented

as the dialogue state input to the dialogue policy, the problem is modelled as a

Markov decision process (MDP) (Levin et al., 1998; Singh et al., 2000). If multiple

hypotheses are presented or a distribution over all dialogue states, a belief state, is

given to the dialogue policy, the problem becomes a partially observable Markov

decision process (POMDP) (Williams and Young, 2007a; Young, 2002). The details

of applying an MDP and a POMDP to a dialogue policy is further explained in

Section 3.1.

2.5 Natural Language Generation

Given the dialogue act selected from the dialogue policy, the natural language

generation (NLG) component then maps it back to a sentence. For example, the

dialogue act: confirm(area=city centre) can be mapped to: “You are looking for

the place in the city centre, right?”

Rule-based (or template-based) NLG systems have been widely utilised because

of its simplicity, robustness and high accuracy in limited domains. This method is

adopted in this work, where a fixed set of hand-crafted rules is created to generate

sentences. The main issues with these systems are their scalability to large domains

and the lack of language variability on their output sentences (Stent et al., 2005).

Corpus-based systems, on the other hand, aim to learn from a set of corpus

data to reduce the efforts on creating rules. Many such systems were inspired by

the language models used in ASR. Such systems generate the desired sentences

by considering the target intention and semantics. This includes the early work

on a class-based n-gram LM approach proposed by Oh and Rudnicky (2000), the

phrase-based NLG system based on factored LMs (Mairesse and Young, 2014), and

recently some neural network approaches (Hu et al., 2017; Wen et al., 2015). On
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the other hand, Rieser and Lemon (2010) have proposed using RL to solve this

problem.

2.6 Speech synthesis

The speech synthesis (SS) component converts the chosen text or the symbolic

linguistic representation into speech. Many systems rely on the concatenative

approach (Hunt and Black, 1996). Such systems hold a large database of short

pre-recorded speech fragments from a single speaker and recombine a portion of

these fragments to form an utterance. The shortcoming of this method is that the

generated speech often sounds discontinuous, since the combined fragments might

be recorded in different scenarios. Furthermore, it is difficult to modify the emotion

of the voice or switch to a different speaker without recording a whole new set of

short speech fragments.

Another widely used approach is the parametric SS (Zen et al., 2009), where the

model is mainly parametrised by an HMM. This HMM-based SS is also used in

this work. In this method, the information for generating the speech is stored in

the model parameters, and the characteristics and contents of the speech can be

easily controlled by the inputs. Such existing models typically pass their outputs

through a vocoder (Holmes, 2001) to generate audio signals. In dialogue systems,

this parametric method is also shown to learn dialogue context sensitive behaviours

to provide more natural speech (Tsiakoulis et al., 2014a,b).

Furthermore, capitalising on the success of neural network models, the use

of deep and recurrent neural networks have also been successfully applied to

parametric SS (Ling et al., 2015; Zen et al., 2016, 2013). Recently, researchers have

even applied neural networks to directly model the raw signal and yield more

natural-sounding speech (Oord et al., 2016).
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2.7 User Simulator

Ideally, when utilising an RL method to model the dialogue policy, the system

would be optimised in interactions with real users. However, for real-world tasks,

training a reasonable policy normally requires hundreds of thousands of dialogues,

and the initial poor performance may result in a negative user experience. This

makes learning from scratch with real users difficult. Furthermore, it is financially

costly and time-consuming to collect large amounts of dialogue data. Hence,

building a user simulator that can interact with the dialogue policy is very useful

(Schatzmann et al., 2006). During the algorithm development process, the user

simulator can be used to converse and train the system as many times as possible.

A user simulator is typically built upon a corpus of example dialogues, and it

is expected to have three characteristics: (1) behave similar to a rational real user,

(2) generate a coherent sequence of sentences/actions, and (3) generalise to new

contexts. How to evaluate a user simulator remains an open question, and there is

not yet a widely accepted metric to measure the correlation between the behaviour

of the real user and the simulator (Pietquin and Hastie, 2013; Schatzmann et al.,

2005). The user simulator can interact with the system in either the dialogue act

level, the word level, or the speech level (Jung et al., 2009). In addition, to simulate

noisy conditions, an error model is typically utilised to distort the output of the

user simulator (Schatzmann et al., 2007b). A statistical user simulator is built upon

a corpus of the example human dialogues.

To effectively encode the dialogue history and user goal, the agenda-based user

simulator with parameters estimated from data as described in Keizer et al. (2010a);

Schatzmann et al. (2007a) is used in this thesis. In this method, the user goal is

decomposed into a set of slot-value pairs representing the requests and constraints

and stored in a stack. An example of the user simulator is shown in Figure 2.2,

where the left is the user goal and the right representing the user agenda of the
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turn-level user intentions in semantic level (dialogue act and slot-value pairs). An

example dialogue in semantic level is also shown in 6.5.

Fig. 2.2 An example of the user simulator.

Depending on the situation, the stack pushes or pops a user’s intention during

the interaction. This ensures consistency in the goal-oriented user behaviour across

the entire conversation.

In addition to the agenda model in this work, there are many other ways to

build a user simulator such as n-gram methods (Eckert et al., 1997), graph- based

(Scheffler and Young, 2002), or a Bayesian approach (Pietquin and Dutoit, 2006).

A sequence-to-sequence approach for training a user simulator has been recently

proposed by Asri et al. (2016). This method views the user-input utterance to

system-output response as a source-to-target sequence generation task, as inspired

by the original sequence-to-sequence model (Sutskever et al., 2014). This model

requires minimal feature engineering and can potentially generalise well with a

large amount of labelled data.



CHAPTER 3

Dialogue Policy Optimisation and Reward Estimation

Dialogue can be viewed as a decision-making task. At each turn, the SDS first

analyses and understands the user’s utterance by the ASR and SLU components.

Then it decides on what to say to the user given the entire dialogue history encoded

by the DST. The dialogue policy is the core module that is responsible for controlling

the flow of the dialogue. In Section 2.4, the introduction of rule-based and statistical

approaches to dialogue policy were briefly described. Since statistical methods,

especially RL, are generally more scalable for real-world SDS deployment, these

are the focus of this chapter.

When developing a dialogue policy, two fundamental issues often appear:

1. How to implement a dialogue policy?

2. What is a suitable design criterion or objective?

In the following, literature reviews on these two questions are presented. Section

3.1 introduces the basics of RL and illustrates how it has been adopted for dialogue

policy. Training a model via RL requires a clear definition of the learning objective,

Section 3.2 therefore discusses various work on dialogue reward estimation and

dialogue evaluation.
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3.1 Reinforcement Learning for Dialogue Policy Opti-

misation

RL (Sutton and Barto, 1999) is a subfield of machine learning, concerned with how

an agent (the machine) learns to interact with the environment. In any situation, the

agent perceives an observation from the environment and determines which action to

take and receives a reward. The goal of this agent is to find a sequence of actions

which maximises the total (or expected) reward. A dialogue policy can be appositely

modelled using an RL framework since the system can learn how to reply to the

user given the transcribed dialogue context via the human-computer interactions.

Many research results have shown that it is beneficial for dialogue applications

(Janarthanam et al., 2011; Lee and Eskenazi, 2012; Young et al., 2013a), especially

under the framework of POMDP. The formal definition of POMDPs and their

application to dialogue are discussed in Section 3.1.1. The definition is followed by

an overview of the training methods in Section 3.1.2 and the introduction of two

main training approaches, value-based (Section 3.1.3) and policy-based (Section

3.1.4) methods. Finally, a taxonomy of RL training methods is illustrated in Section

3.1.5.

3.1.1 Dialogue as a Partially Observable Markov Decision Pro-

cess

Partially observable MDPs are a generalisation of MDPs. It models an agent

operating in a world where the system dynamics are decided by an MDP but

without observing the underlying states. An MDP is a mathematical framework

describing an agent interacting with a stochastic environment. It is formally

represented by a tuple {S, A, T, R,γ}, which includes the set of all states S, the set

of possible actions A, the Markovian state transition function T: P(st+1|st, at), the
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reward function R defining the immediate reward r(st, at), and γ as a geometric

discount factor.

In the MDP setting, the state in the environment is fully observable. The goal is

to find a policy π which selects an action at each state, π : S→ A. In principle, this

policy aim to determine an action while viewing the entire history so far, including

all previous observations, states, and actions. However, this is often intractable due

to the high complexity of the long sequence. To handle this issue, the state is often

assumed to satisfy the Markov property and depends only on its previous state.

The policy can be considered as stochastic, which is a conditional distribution

π(a|s), or deterministic, which is π(s) = a. It is optimised to maximise the expected

discounted reward, Rπ
t from time t, which is the sum of the discounted rewards

over a potentially infinite horizon:

Rπ
t =

∞

∑
i=0

γirt+i+1 (3.1)

The discount factor γ ∈ [0,1] is used to reduce the importance of rewards

collected in later steps.

The MDP framework, however, is not well-suited for real-world SDS. Its assump-

tion on the fully observability of states prevents it from coping with the corrupted

ASR and SLU outputs due to different levels of noisy conditions and the inherent

ambiguity of the natural language. This leads to POMDPs, which offer a principled

mathematical model for agents to act in a non-deterministic domain under partial

observability, which are suitable for handling real-world sequential decision tasks.

A POMDP is determined by a tuple {Ω,S, A, T, R,O,γ}, where {S, A, T, R,γ}

is the underlying MDP, Ω is the set of observations, and O defines observation

probabilities: P(ot+1|st, at). Figure 3.1 shows the influence diagram of a POMDP.

The connections between these notations and the dialogue setting are as follows.

• Observation: The agent inspects the noisy observation o ∈Ω from the world.

As described in section 2.2, the output of the SLU component is typically an N-
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Fig. 3.1 POMDP influence diagram. Shaded nodes denote observable variables and
non-shaded circles represent un-observed ones. Solid lines show direct influence,
and the dashed line represent a distribution on the pointed variable.

best list of the scored semantic hypotheses and is what the agent understands

from the user.

• State: A state s ∈ S captures all related information in the environment (user).

It is latent and inferred from the observation o. Since it often depends on

the number of entities in the domain’s ontology which is usually large-scale,

the consequent dimensionality of the state space is a crucial concern in the

real-world SDS. Efficient approximation techniques are therefore adopted to

deal with its “curse of dimensionality”.

• Action: The execution of the action a ∈ A results in a state transition which

then updates the agent’s understanding of the environment. In the statistical

paradigm of SDS, the collection of all possible replies from the system forms

an action set. Since language has a high variability, a sentence such as ‘You

want a hotel that is in the north’ is often denoted by a higher-level representation

from the SLU component such as confirm(type=hotel,area=north). In some

cases, this representation is further heuristically mapped to a summary action

space such as Confirm for tractability.

• Transitions: In real world applications, the environment is dynamic, causing

uncertainty in the effect of each action and resulting in stochastic transitions
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between states. A transition function P(st+1|st, at) specifies the probability of

arriving at state st+1 when the agent performs action at from state st.

• Observation Probability: Probability P(ot+1|st, at) where the agent observes

ot+1 after executing action at and reaching state st. This often models the

accuracy of the systems’ sensing system.

• Reward: A reward r(s, a) is either stochastic or deterministic. It serves as an

objective that directs the agent to learn a desirable behaviour. In an SDS, it is

a crucial concern since measuring the quality of a dialogue is non-trivial and

often involves human feedback. This issue is one of the main research topics

in this thesis and is investigated in-depth in the following sections.

• Discount Factor: γ ∈ [0,1] determines the effect of future outcomes on the

current state s. In the SDS setting, it is typically set close to 1 since the

dialogue length is finite and each dialogue turn has equal importance.

A schematic diagram of modelling dialogue management in the RL framework

is illustrated in Figure 3.2. At each time step t, the agent gets an observation ot from

the user (environment). It is determined by the ASR, SLU and DST components.

The current state st is then inferred from this observation ot and the previous state

st−1. Since states are unobservable, the system thus maintains a distribution over all

possible states, called the belief state b(st). Given the state space S, the belief space B

is [0,1]|S|. The initial distribution over all states is therefore b0 = [b(s0 = s1), ..., b(s0 =

s|S|)]⊤. Based on the current belief b(st), the agent takes an action a which is then

transformed into natural speech using the NLG and TTS. When each action is taken,

the agent receives a reward r(st, at). This also causes the environment to transition

to state st+1 with probability P(st, a, st+1) = P(s′ = st+1|s = st, a = at).

The model in the POMDP dialogue framework generally learns to update the

belief over dialogue state and determines a good policy (Thomson and Young,

2010). In recent years, these two parts have been decomposed into a DST and a
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Fig. 3.2 Dialogue policy optimisation in an RL loop.

dialogue policy component and achieved better overall performance. Research on

DST have been actively investigated, as mentioned in Section 2.3

The main focus of this thesis is concerned with learning a dialogue policy: a

function π(b(s)) = a that determines which action to take given a belief distribution

b(s). This is further discussed in detail in the next section.

3.1.2 Overview of Dialogue Policy Optimisation Methods

The spoken dialogues considered here have a finite number of steps T 1. This type

of finite time-step (horizon) RL task is called an episodic task. The dialogue policy

π is trained to maximise the episodic cumulative turn-based reward over the entire

dialogue:

Rπ
t =

T−t−1

∑
i=0

γtrt+i+1 (3.2)

To determine an optimal policy π∗, two categories of methods are usually

adopted: value-based and policy-based methods. The relationship between these two

is shown in Figure 3.3, where the intersection is often referred to as the Actor-Critic

method. Details of each approach are discussed in the following sections.

For tasks such as SDS which assume the input utterance from the user is

grounded by finite and discrete semantics (states), a POMDP with finite state is

1Typically in the range of 2 to 20
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Fig. 3.3 An overview of RL training methods.

adopted. A discrete-state POMDP can be cast as a continuous-state MDP. The

following policy optimisation methods are mostly explained in the context of MDPs

since they can be easily extended to POMDPs.

3.1.3 Value-based Methods

For MDPs, when using value-based approaches, the expected accumulated reward

Rπ
t at state s ∈ S following the policy π is often modelled by the value function

Vπ(s) : S→R:

Vπ(s) = Eπ(Rπ
t |st = s) = Eπ

( T−t−1

∑
i=0

γirt+i+1|st = s
)

, (3.3)

where the expectation Eπ is computed over all possible state sequences generated

by the policy π.

Similarly, the value function can be defined not only on states, but also on actions.

The Q-function Qπ : S× A→R is thus defined as the expected accumulated reward

at the given state-action pair (s, a) following the policy π:

Qπ(s, a) = Eπ(Rπ
t |st = s, at = a) = Eπ

( T−t−1

∑
i=0

γirt+i+1|st = s, at = a
)

, (3.4)

where, likewise, the expectation Eπ is calculated over all possible state-action

sequences generated by the policy π.
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The relation between the value function Vπ(s) and the Q-function Qπ(s, a) is

thus:

Vπ(s) = Qπ(s,π(s)). (3.5)

Given a finite state space S, the exact solution to the optimal value function

satisfies the Bellman optimality equation V∗ = BV∗ (Bellman, 1954):

V∗(s) = max
a ∑

s′∈S
P(s, a, s′)(R(s, a) + γV∗(s′)). (3.6)

In a similar fashion, the optimal Q-function is expressed by the following:

Q∗(s, a) = ∑
s′∈S

P(s, a, s′)(R(s, a) + γmax
a′

Q∗(s′, a′)). (3.7)

The optimal Q-function Q∗(s, a) and the optimal value function V∗(s) are related

by the following:

V∗(s) = max
a

Q∗(s, a). (3.8)

Consequently, the optimal policy π∗ can be implicitly derived either from the

optimal value function:

π∗(s) = argmax
a ∑

s′
P(s, a, s′)(R(a, s) + γV∗(s′)), (3.9)

or from the optimal Q-function:

π∗(s) = argmax
a

Q∗(s, a), (3.10)

by choosing an action that maximises the value function or the Q-function.

Solving the POMDP is much harder since the true state if not observable. It

consists of determining the best action a to be taken at each belief state b called a

policy π : B→ A, which maximises the expected total discounted reward starting

from the belief b. Nevertheless, even if the true state is not known, the optimal
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value function for each state can be still computed using the transition function

P(o, st, a) and the observations o ∈Ω seen (Kaelbling et al., 1998) as follows:

V∗(s) = max
a ∑

s′∈S
P(s, a, s′)

(
R(s, a) + ∑

o∈Ω
P(o, s, a)γV∗(s′)

)
(3.11)

The optimal Q-function for POMDPs can thus be computed as follows:

Q∗(s, a) = ∑
s′∈S

P(s, a, s′)
(

R(s, a) + max
a′

∑
o∈Ω

P(o, s, a)γQ∗(s′, a′)
)

(3.12)

Then, the optimal value function for any possible belief state V(b) can be computed

as the weighted sum over all states using equations 3.1.3

V∗(b) = ∑
s∈S

b(st = s)V∗(s), (3.13)

where b(s) is the value of the belief state for the state s. In a similar way, the optimal

Q-function can also be computed as a weighted sum using equation 3.12:

Q∗(b, a) = ∑
s∈S

b(st = s)Q∗(s, a). (3.14)

However, finding an exact algorithm for POMDP is difficult due to the continuity

of the belief state. It is therefore non-trivial to solve a POMDP (Murphy, 2000;

Papadimitriou and Tsitsiklis, 1987), especially in a real-world task, and thus requires

approximation methods (Buşoniu et al., 2011). Point-based methods (Pineau et al.,

2003; Shani et al., 2013) are effective by constraining the planning to relevant

reachable belief states when computing the value function, but they are not scalable

to large state-action spaces and are often model-based approaches that require the

estimation of the environment (transitions). Model-free methods are another family

for solving POMDPs that strike the balance between exploring the environment

and exploiting the learnt policy and directly updating the value functions without

learning the transition models. In this case, sample-efficiency is a deciding factor
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in whether the model can realistically be employed on-line for live applications.

GP-SARSA (Gasic and Young, 2014) and Kalman temporal-difference (Daubigney

et al., 2012a) are methods that bootstrap estimates of sparse value functions from

minimal numbers of training samples and are thus useful for real-time SDS.

3.1.4 Policy-based Methods

Instead of being implicitly defined by a value function, the policy π can also be

directly parametrised. Policy-based methods, or Policy Search (Deisenroth et al.,

2013), directly operate in the parameter space Θ to find the policy πθ(a|s) (or

πθ(a|b) in POMDP) with parameters θ ∈ Θ and avoid learning a value function.

This is shown in the bottom right of Figure 3.3.

Recall from Equation 3.2 and 3.3 that episodic RL can be viewed as the optimi-

sation problem to maximise the expected reward J(π):

π∗ = max
π

J(π) = max
π

E[R|π], (3.15)

where R is the total episodic reward collected using policy π. If a parametrised

model πθ is used for the policy, the solution is to maximise the expected reward

J(θ):

θ∗ = argmax
θ

J(θ) = argmax
θ

E[R|πθ]. (3.16)

Similar to value-based methods, this optimisation can also be divided into model-

based and model-free approaches. The former fully understands the dynamics

(transition probability) of the operating environment while the latter does not.

Therefore, model-free approaches are normally required to sample the environment

during estimation.

One model-free method to find the optimal solution is a derivative-free optimi-

sation approach which treats the entire process as a black box and uses evolutionary

strategies (ES) algorithms for heuristic searching. The core idea of ES is as fol-

lows: at each iteration (generation), a set of parameter vectors (current generation)



3.1 Reinforcement Learning for Dialogue Policy Optimisation 29

is perturbed (mutated) and then evaluated based on the objective function, the

total reward R. The parameter vectors with the highest scores on the objective

function are then recombined to constitute the population for the next generation.

Popular approaches such as cross entropy method (Rubinstein and Kroese, 2013)

and natural evolution strategies (Salimans et al., 2017; Wierstra et al., 2014) have

been successfully applied to real-world problems. The main problems with ES

approaches are inefficiency and incomprehensibility due to them being agnostic

to the given problem. Black box optimisation methods are purely ‘guessing’ the

optimal solution.

Policy-gradient methods, on the other hand, aims to optimise the policy with

respect to the total reward by gradient ascent. Gradient-based updates guarantee

finding a local optimum. Assuming the trajectory τ sampled from policy πθ, the

policy gradient of J(θ) with respect to the parameter θ is derived as follows::

∇θ J(θ) =∇θEτ∼πθ
[R(τ)] =∇θ

∫
τ

p(τ|πθ)R(τ)dτ

=
∫

τ
∇θ p(τ|πθ)R(τ)dτ

=
∫

τ
p(τ|πθ)

∇θ p(τ|πθ)

p(τ|πθ)
R(τ)dτ

=
∫

τ
p(τ|πθ)[∇θ log p(τ|πθ)R(τ)]dτ

= Eτ∼πθ
[∇θ log p(τ|πθ)R(τ)]

The derivation proceeds from the third to the fourth step by using the Likelihood

ratio trick: ∇ log p(x) = 1
p(x)∇p(x), where ∇ log p(x) is the score function. Using the

chain rule in probability theory, we can further expand the trajectory probability

p(τ|πθ) as follows:

p(τ|πθ) = µ(s0)π(a0|s0,θ)p(s1,r1|s0, a0)π(a1|s1,θ) . . . π(aT−1|sT−1,θ)p(sT,rT|sT−1, aT−1),
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where µ(s0) is the initial state distribution. When calculating ∇θ log p(τ|πθ), the

sequence product turns into a sum, and the differentiation with respect to θ

cancels the terms µ(s0) and p(st,rt|st−1, at−1) to avoid having to know the dynamics

(transition probability) of the environment. This leads to the final equation:

∇θ J(θ) = Eτ∼πθ

[ T−1

∑
t=0
∇θ logπ(at|st)R(τ)

]
. (3.17)

Therefore, setting a learning rate α, the update of the policy parameters θ is as

follows:

θ← θ + α∇θ J(θ). (3.18)

Considering a single reward at time t, Equation 3.17 can be rewritten as the

following:

∇θEτ∼πθ
[rt] = Eτ∼πθ

[
rt

t

∑
t′=0
∇θ logπ(a′t|s′t)

]
. (3.19)

The (total) reward rt is obtained when performing a sequence of actions at′ , with

0 ⩽ t′ ⩽ t. When summing over the entire trajectory (∑T−1
t=0 ), it can further be

presented as follows:

∇θEτ∼πθ
[R(τ)] = Eτ∼πθ

[ T−1

∑
t=0

rt

t

∑
t′=0
∇θ logπ(a′t|s′t)

]
(3.20)

= Eτ∼πθ

[ T−1

∑
t=0
∇θ logπ(at|st)

T−1

∑
t′=t

r′t

]
. (3.21)

The term ∑T−1
t′=t r′t in the above equation is the total reward collected from time-

step t ∼ T − 1. It can be further replaced by Q-value function in Equation 3.4:

∇θEτ∼πθ
[R(τ)] = Eτ∼πθ

[ T−1

∑
t=0
∇θ logπ(at|st)Qπθ(st, at)

]
. (3.22)

This equation is known as policy gradient theorem (Sutton et al., 2000).
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In practice, the gradient is estimated by a batch of N samples collected using the

policy πθ from the environment, where the accuracy increase when N→∞. One

way to solve this is the REINFORCE algorithm (Monte-Carlo method) (Williams,

1992), which directly samples the total reward following the policy πθ:

∇̂θ J(θ) =
1
N

N

∑
n=1

( T−1

∑
t=0
∇θ logπ(at|st)

T−1

∑
t′=t

r′t

)
(3.23)

Since this form of gradient has a potentially high variance, it can hinder the

learning efficiency. Hence, a baseline function b(s) is typically introduced to reduce

the variance while not changing the estimated gradient (Sutton and Barto, 1999;

Williams, 1992). This baseline can be any arbitrary function. However, the best

candidate for this baseline b(s) is the value function V(s) (Greensmith et al., 2004).

Eq. 3.23 then becomes the following:

∇̂θ J(θ) =
1
N

N

∑
n=1

( T−1

∑
t=0
∇θ logπ(at|st)

( T−1

∑
t′=t

r′t − b(st)
))

(3.24)

The difference ∑T−1
t=t′ rt − b(st) demonstrates whether the total reward using the

current policy is better than expected (V(st)), showing how good the current action

at is. This can be further cast as the advantage function At = ∑T−1
t′=t rt′ − b(st), and a

detailed description on the advantage function is discussed in Chapter 7.

One can also adopt a separate function, a critic with parameters w, to estimate

this Q-function Qπθ(st, at) in Equation 3.22:

Qw(st, at) ≈ Qπθ(st, at). (3.25)

This leads to the actor-critic algorithm (Grondman et al., 2012; Konda and Tsitsiklis,

1999):

∇θ J(θ) = Eτ∼πθ

[ T−1

∑
t=0
∇θ logπ(at|st)Qw(st, at)

]
, (3.26)
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which has two sets of parameters: w for the critic and θ for the actor (policy). The

gradient ascent direction of the actor is suggested by the critic. The critic here is

basically a Value- or a Q-function; therefore, most of the approaches in the previous

section can be utilised. The main advantage of this method is that the policy can be

directly modelled, and the critic provides a good estimation of the expected total

reward to reduce the variance.

Policy-based RL methods have been successfully applied to various tasks such

as robotics (Deisenroth et al., 2013; Peters and Schaal, 2006), games (Silver et al.,

2016), and non-differentiable computations in vision and language tasks (Mnih

et al., 2014; Yu et al., 2017). Its application to SDS are also numerous (Dhingra

et al., 2016; Fatemi et al., 2016; Jurčíček, 2012; Li et al., 2016; Williams et al., 2017).

The main benefits of such a method are the following: 1) it can learn stochastic

policies, 2) it is effective in high-dimensional or continuous action spaces (Schulman

et al., 2016), and 3) it has better convergence properties compared to value-based

methods, since the policy is directly modelled and optimised towards the desired

objective. More details are provided in Chapter 7.

3.1.5 Taxonomy of Reinforcement Learning Approaches

In the previous sections, two main methods for finding an optimal policy have

been introduced. As mentioned above, policy-based approaches have stronger

convergence characteristics than value-based methods. The latter often diverge

when using function approximation since they optimise in value space and a slight

change in value estimate can lead to a large change in policy space (Sutton et al.,

2000). Policy-based methods, especially policy-gradient approaches, suffer from

low sample-efficiency, high variance and often converge to local optima, since they

typically update using gradient-based methods. In this dissertation, both training

methods will be utilised and explored. For the first part of the thesis (Chapters

4 – 6), GP-SARSA (Gasic and Young, 2014), a value-based method, is used for
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policy learning. For the second part (Chapter 7), a neural network model is used to

parametrise the policy and is trained with policy-based and actor-critic methods.

There are a variety of different dimensions which characterise various RL

approaches, and these are presented in the following sections.

Episodic and Continuing task

As described above, the goal is to find a policy π that maximises the expected

discounted reward Rπ
t starting at time-step t. There are two types of RL problems:

1) the learning process is divided into several finite-length episodes, and 2) the

learning process has only a single episode which continues indefinitely. The first

case is called the episodic task, and the second case is referred to as the continuing

task. In episodic tasks, an initial and a terminal state are clearly defined. The

agent restarts in the initial state for each new episode after the previous one ends.

As described in section 3.1.2, SDS is an example of an episodic task which has a

finite number of interactions. Other examples such as games and mazes are also

episodic. For continuing tasks, the formal expected discounted reward is defined

as in Equation 3.1. In this case, the discount factor γ is normally set to less than 1

to prevent infinite total reward.

Model-based and Model-free

The difference between model-based and model-free methods is whether the knowl-

edge (dynamics) of the environment is known. In the POMDP setting, this knowl-

edge includes the transition and observation functions. If this information is

available, model-based dynamic programming algorithms such as value iteration or

policy iteration (Sutton and Barto, 1999) can be adapted to obtain an exact solution.

These algorithms exploit the recursive characteristics of the Bellman equation in

Equation 3.6 to find the optimal value function estimates between every consecutive

time-step. Otherwise, this information can also be learnt from data (Kaelbling

et al., 1998), and the dynamic programming algorithms can then be used. However,
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model parameters are often difficult to learn, and learning using a bad model can

harm the performance.

Model-free methods, in contrast, do not make any assumption on the POMDP

structure and then model the expected total reward directly from the collected

rewards. This enables the agent to discover the underlying structure of its operating

environment. In the SDS context, model-based approaches are often intractable

(Williams and Young, 2007a). Therefore, the main focus of research to date has

been on applying model-free methods (Jurčíček, 2012; Young et al., 2013b).

Exploration and Exploitation

When using model-free RL methods, it is often unclear what sort of action the

agent should take. This problem is often referred to as the exploitation/exploration

dilemma: 1) exploitation: selecting the optimal action based on the current policy

2) exploration: taking a non-optimal action given the current policy to get more

information about the environment to estimate the truly optimal policy better.

Gathering enough information is always crucial to making the best overall decisions.

However, too much exploration may prevent the agent from converging to the

optimal solution.

One widely-adopted strategy is the ϵ-greedy method, which selects the optimal

action based on the current policy with probability 1− ϵ, or a random action to

explore the environment with probability ϵ:

πϵ(s) =

{
argmax

a∈A
π(s, a) with prob. (1− ϵ)

random a ∈ A with prob. ϵ
(3.27)

The problem with this method is that all actions are treated equally when exploring.

In some cases, certain actions are clearly more informative than others for finding a

globally optimal policy. Hence, using this method might take longer to converge

to the desired solution. Other approaches such as Boltzmann exploration or

Bayesian methods (Gašić and Young, 2014; Ghavamzadeh et al., 2015; Tegho et al.,
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2017) exploit the probabilistic estimate of the current policy or its corresponding

uncertainty measurement to further improve the convergence rate of policy learning.

Dynamic Programming, Monte-Carlo and Temporal Difference Backup

In RL, the term backup represents the process of updating the estimated value of

a state using values of future states in an episode. If this value of the future state

is also an estimate, this is called the bootstrapping. Figure 3.4 demonstrates the

backup diagrams of different methods: dynamic programming, exhaustive search,

Monte-Carlo (MC) and temporal difference (TD). Circles represent the states, dots

represent the executed actions, and shaded squares represent terminal states. Since

exhaustive search is usually intractable, it is not discussed in detail here.

Dynamic programming is a model-based approach which bootstraps the current

state value based on the values of all possible states in the next time-step rather

than one sampled state. On the other hand, MC and TD are model-free methods

where the backup is done on the sampled experiences. The difference between MC

and TD is whether bootstrapping is adopted. MC must learn from the complete

sequence and looks ahead till the end of the episode, where the total reward can be

empirically computed and used for updating. It has high variance and zero bias,

but it requires more data to converge to a desired policy. TD, in contrast, learns

from incomplete sequences and looks ahead only one step. It utilises the estimated

value of a state in the next time-step to update the estimate of the current state.

This method has low variance and high bias, which depends highly on how good

the value estimations are. To combine the best of both, Sutton and Barto (1999)

introduced TD(λ), where λ ∈ [0,1] and is related to n-step look ahead total reward.

TD(0) is the standard TD method, and TD(1) is equivalent to Monte-Carlo (MC).

On-line and Off-line

On-line RL methods typically update the agent’s policy based on each sample (or

experience) incrementally in the interaction. The MC approach and TD algorithms



36 Dialogue Policy Optimisation and Reward Estimation

Fig. 3.4 The backup diagrams of different methods redrawn from Sutton and Barto
(1999): Dynamic Programming, Exhaustive Search, Monte-Carlo and Temporal
Difference. Circles represent the states, dots represent the executed actions, and
shaded squares represent the terminal states. The x-axis and y-axis illustrate the
width (sample/full) and depth (shallow/deep) of the update.

such as SARSA and Q-learning (Sutton and Barto, 1999) fall into this category.

On the other hand, off-line (or batch) RL approaches update the agent’s policy

with a batch of samples, which is more sample-efficient since more information

is provided in one single parameter update. Fitted-Q Iteration (Antos et al., 2008;

Riedmiller, 2005) is one of these applicable methods for real-world tasks.

On-policy and Off-policy

Algorithms to learn the RL policy can also be split into off-policy and on-policy

methods. The policy used to generate training dialogues (episodes) is referred to as

the behaviour policy µ. This is in contrast to the policy to be optimised which is called

the target policy π. Finding the target policy π is the goal of all RL problems. When
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learning with on-policy methods, it is assumed that actions are drawn from the

same policy as the target to be optimised (µ = π). When using off-policy methods,

since the current policy π is updated with a batch of samples generated from some

old behaviour policies µ, an importance sampling (IS) ratio is used to rescale each

sampled reward to correct the sampling bias at time-step t: ρt = π(at|bt)/µ(at|bt)

(Meuleau et al., 2000). These old behaviour policies might be collected from the

earlier phase of the RL agent or from a corpus of dialogue interactions (Daubigney

et al., 2012b). Further investigation and more details on these methods are discussed

in Chapter 6.

3.2 Reward Estimation in Dialogues

3.2.1 Dialogue Evaluation

Evaluating an SDS is difficult due to the complexity of the long-term interactions

between the user and the system. Unlike most speech and natural language

processing tasks where the evaluation metrics are more easily specicfied (Goldstein

et al., 1999; Hirschman and Thompson, 1997; Mangu et al., 2000), the definition

of a good SDS is very vague. The entire SDS can be broken down into various

modules such as SLU and DST, and their performance can be assessed individually.

However, the joint evaluation of the whole system is still challenging.

The most natural way to evaluate the dialogue is via human judgement. How-

ever, it is often costly to ask a human to evaluate every dialogue, and anyway

different users might have their own subjective view of dialogue quality. Thus, an

automatic evaluation metric is desired to avoid the costly human-rating process.

A corpus of dialogue data can be collected and treated as a supervised learning

task (Bordes et al., 2017; Vinyals and Le, 2015). The goal of the model there is to

‘mimic’ the responses collected in the data and be evaluated by similarity metrics

such as BLEU (Papineni et al., 2002) and METEOR (Banerjee and Lavie, 2005) on

the generated natural language, which are widely used in the machine translation
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literature. Nonetheless, it has been shown that these word-overlap similarity metrics

have low correlation with human ratings (Liu et al., 2016). Furthermore, the

supervised training sets often lack sufficient coverage of all the possible dialogue

scenarios.

Since task-oriented SDS is the focus of this thesis, task-completion is a straight-

forward automatic measurement which checks whether the information the system

provides matches the user goal. As mentioned in Section 2.4, the quality of a

dialogue is often related to the performance of the dialogue policy, which controls

the flow of the interaction. In the SDS pipeline, this task completion information

can serve as the high-level learning objective of the dialogue policy. It is often

referred to as the reward in an RL setting. However, it is hard to measure due to

the unknown objective of the user when assessing a dialogue task on-line. Since a

robust reward metric is critical for building an SDS, it is studied in depth in this

thesis.

3.2.2 Heuristic Dialogue Reward Settings

A clear objective is the key to success and the reward function plays an important

role in the POMDP framework and in RL tasks generally. It defines the desired

behaviour of the learning agent (Dewey, 2014). Typically, a positive reward is

assigned when certain situations related to task success are reached and vice versa.

For instance, in robotics control and planning problems, chess, and Atari games,

the common characteristic between these tasks is that they often have well-defined

evaluations and clear goals. However, as mentioned above, the term ‘success’ is

not always well-defined in SDS applications, since they involve the feedback of

human users that are often unknown to the system. Moreover, in SDS, per-turn

feedback is costly and often infeasible; thus, only a sparse reinforcement signal is

obtained as a result. In several task-oriented examples to date (Casanueva et al.,

2015; Lemon et al., 2006; Williams and Young, 2007b), the definition of success is

often formulated based on a predefined task given to the users and determined by
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whether all slots (requirements) described in the task are fulfilled. In addition, a

per turn penalty is applied for shortening the dialogue.

The reward is highly related to the ‘goodness’ of the interaction in SDS, which

is often determined by the user satisfaction. The way it is defined also dramatically

affects the learning speed of the dialogue policy. This work presents a review of

different perspectives to reward modelling.

3.2.3 The PARADISE Evaluation Framework

The PARADISE (PARAdigm for DIalogue System Evaluation) is a unified evalua-

tion framework (Walker et al., 1997) that defines the user satisfaction of the SDS

performance as the weighted sum of the dialogue success (task completion), the

predefined dialogue costs such as dialogue duration, and the counts of confirma-

tions the system has made. Multivariate linear regression is adopted to estimate

the weights given a labelled dialogue corpus. A comparison across domains is

made possible due to normalisation of the measurement, and the contribution

of each dialogue cost can be found from the learnt weights. This measure was

later used as a reward function for learning a dialogue policy (Rieser and Lemon,

2011). However, as noted, task completion is rarely available when the system is

interacting with real users, and concerns have been raised regarding the theoretical

validity of the model (Larsen, 2003).

3.2.4 Inverse Reinforcement Learning

Quantifying user satisfaction is non-trivial. Rather than explicitly defining a reward

function, inverse reinforcement learning (IRL) aims to recover the underlying

reward from demonstrations of good behaviour and then learn a policy which

maximises the recovered reward (Russell, 1998). IRL was first introduced to SDS

in Paek and Pieraccini (2008), where the reward was inferred from human-human

dialogues to mimic the behaviour observed in a corpus. IRL has also been studied
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in a Wizard-of-Oz (WoZ) setting (Boularias et al., 2010; Rojas Barahona and Cerisara,

2014), where typically a human expert served as the dialogue manager to select

each system reply based on the speech understanding output at different noise

levels. However, this approach is costly and there is no reason to suppose that a

human wizard is acting optimally, especially at high noise levels. IRL has also been

introduced to various aspects of SDS, such as dialogue management (Kim et al.,

2014; Sugiyama et al., 2012) and user simulation (Chandramohan et al., 2011). An

overview of IRL for SDS is summarised in (Pietquin, 2013).

3.2.5 Coherence in Dialogue Systems

Another stream of dialogue evaluation research that is potentially useful for reward

design is naturalness assessment of the system reply, an example of which is the

coherence of the generated dialogue responses to the user utterances (Gandhe and

Traum, 2008; Higashinaka et al., 2014) that encode lexical and semantic information.

When employing this in SDS, the main focus of the policy learning is the semantic

features (whether the system replies reasonably), while the lexical representation is

less focussed; as it is realised in the NLG component after the decision (semantics)

is made in the dialogue manager.

3.2.6 Reward Shaping

Unlike supervised learning, instructive feedback is not provided for each input in

RL learning systems. This leads to the temporal credit assignment problem (Sutton,

1984), where the reward signals are usually weak and delayed. Therefore, learning

is often slow.

A straightforward way to address this issue is to provide the system with an

extra reward signal F in addition to the original environmental reward R. This

makes the system learn from the composite signal R̃ = R + F. This reward F often

encodes expert knowledge that complements the sparse signal R (Mataric, 1994).
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Since the reward function defines the objective of the system, modifying it may also

change the original problem into a new problem. In this case, a poorly-designed

reward function might degrade learning, learnt policies may never reach the goal

of the original problem (Randløv and Alstrøm, 1998).

Consequently, Ng et al. (1999) proposed potential-based reward shaping (PBRS).

When the task is modelled as a fully observable MDP, formal requirements on

shaping reward are defined as a difference between potential functions ϕ on

consecutive states s and s′. This is guaranteed to preserve the optimality of policies:

F(st, a, st+1) = γϕ(st+1)− ϕ(st), (3.28)

where γ is exactly the same discount factor used for policy learning. The potential

function ϕ enables domain or expert knowledge to be incorporated. Thus the

resulting expected total reward will be as follows:

E[r̃0 + γr̃1 + γ2r̃2 + ...]

= E[(r0 + γϕ(s1)− ϕ(s0)) + γ(r1 + γϕ(s2)− ϕ(s1)) + γ2(r2 + γϕ(s3)− ϕ(s2)) + ...]

= E[r0 + γr1 + γ2r2 + ...− ϕ(s0)].

Thus, the corresponding value function, Q-value function, and advantage function

are as follows:

Q̃π(s, a) = Qπ(s, a)− ϕ(s)

Ṽπ(s) = Vπ(s)− ϕ(s)

Ãπ(s, a) = (Qπ(s, a)− ϕ(s))− (Vπ(s)− ϕ(s)) = Aπ(s, a).

Based on these equations, the optimal policy, either using the value-based

method or using the policy-based method, is invariant to the shaping reward
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(Schulman et al., 2016). Given this property, its extension to POMDPs was shown

to hold by proof and empirical experiments (Eck et al., 2015):

F(bt, a,bt+1) = γϕ(bt+1)− ϕ(bt), (3.29)

where bt represents the belief state at turn t, and a represents the action leading bt

to bt+1.

However, determining an appropriate potential function for an SDS is non-trivial.

Ferreira and Lefèvre (2013) have proposed the use of reward shaping via analogy to

the ‘social signals’ naturally produced and interpreted throughout a human-human

dialogue. This non-statistical reward shaping model used heuristic features for

speeding up policy learning. As an alternative, one may consider attempting to

handcraft a finer grained environmental reward function. For example, Asri et al.

(2014) proposed diffusing expert ratings of dialogues to the state transition level

to produce a richer reward function. Policy convergence may occur faster in this

altered POMDP and dialogues generated by a task based simulated user may

also alleviate the need for expert ratings. However, unlike PBRS, modifying the

environmental reward function also modifies the resulting optimal policy.

Determining an appropriate potential function for an SDS is non-trivial. Rather

than handcrafting the function with heuristic knowledge, Chapter 6 presents a

statistical method for predicting proper values for shaping rewards.

3.3 Summary

RL has been shown to be effective in learning a dialogue policy. This chapter has

described two crucial factors: the algorithms for policy learning and the reward

estimation methods for guiding a better policy. In the first half of the chapter, the

basics and training methods for RL-based policy were explained. The design and

estimation of the reward function for dialogue applications was then investigated

in the second half. As noted, computing a reward function in a real-world SDS is
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not straightforward. Hence, the next two chapters explore this issue further and

present some new approaches.





CHAPTER 4

Policy Learning with Off-line Reward Estimator

4.1 Motivation

The ability to compute an accurate reward function is essential for optimising a

dialogue policy via RL. However, evaluating a dialogue on-line in order to compute

a reward for training the policy is difficult since real users have their own goal in

mind which is not available to the system. In most previous works, the training

of an SDS has been done with either recruited subjects (Gašić et al., 2014; Gašić

and Young, 2014) presented with a pre-defined task to complete, or via simulated

users (Daubigney et al., 2012a; Keizer et al., 2010b; Lemon and Pietquin, 2007; Levin

et al., 2000; Schatzmann and Young, 2009) who randomly sample a goal over an

ontology. In both cases, the specific prior knowledge of the user’s goal is used to

calculate an objective measure (Obj) of whether the SDS completed the task. In

these systems, a common issue is that users are not motivated by a real information

need. THus, they often1 fail to follow exactly the presented goal, resulting in

Obj=failure even though the SDS may have provided everything asked for it. To

avoid penalising the SDS by learning from such inaccurate reward signal, the user

was also asked for their opinion on whether they achieved the task goals, thereby

obtaining a subjective success rating (Subj). For policy learning, only dialogues for

which Obj=Subj (Gašić et al., 2013b) are used, and the remainder are discarded.

1This case occurs in our experience at least 20% of the time (Gašić et al., 2011).
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In real-world systems, this prior knowledge of the user’s goal is simply not

available, making any calculation of an ‘objective’ measure nearly impossible.

However, knowledge of task success or failure is essential for training an SDS. Of

course in some situations it is possible and even natural for the system to ask the

user for feedback at the dialogues conclusion (e.g. confirming a purchase with a

yes/no question); however, this is not always possible and also user responses can be

‘noisy’ (Larsen, 2003), which results in slower learning. It is, therefore, essential to

find effective methods for computing rewards with real users when the underlying

task is unknown.

Here, a reward estimator is presented which can be trained to estimate task

success. This reward estimator is realised by an RNN, which is sequentially inputted

with the information of the human-machine interaction that appears at each turn.

It requires training data annotated for task success which in the work described

here is generated off-line by a user simulator. Once trained, the reward estimator

enables on-line policy optimisation with real users without access to either Obj or

Subj task success ratings.

4.2 Recurrent Neural Network Reward Estimator

RNNs are a subclass of neural network models with recurrent connections from

one time-step to the next. Their ability to succinctly capture and retain history

information makes them suitable for modelling sequential data with temporal

dependencies. They have been previously used with success in a variety of natural

language processing (NLP) tasks such as language modelling (Karpathy and Fei-Fei,

2014; Mikolov et al., 2010, 2011b), SLU (Mesnil et al., 2015b) and NLG (Wen et al.,

2015).

The core idea of the RNN is the information flow between different time-steps

within the model. A commonly used RNN, Elman-type RNN (Elman, 1990), is

depicted in Figure 4.1. This model includes a hidden layer ht at time-step t that
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Fig. 4.1 Recurrent neural network architecture with three time-steps.

performs the addition of linear transformations of the input xt and the output of

the previous step, and then it uses a non-linear operation for predicting the output

ŷt. The mathematical representation is as follows:

ht = f (Wxhxt + Whhht−1) (4.1)

ŷt = g(Whoht), (4.2)

where the Ws are the weight matrices between different layers, f (·) is a non-linear

activation such as a sigmoid or tanh and g(·) is another transformation from

real-valued ht to the desired output such as a softmax for an output probability

distribution. Additional learnable weights b can also be added to bias the output in

the hidden and output layers.

A loss function is defined to calculate the error between the prediction and true

label for performing gradient-based methods such as back-propagation through

time (BPTT) to update the weights. However, basic RNN models often suffer from

vanishing or exploding gradient problems that limit their capability of modelling
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Fig. 4.2 An unrolled view of the RNN reward estimator. The feature vectors
extracted at turns t = 1, . . . , T are labelled ft. Two types of output are considered:
binary classification and regression.

long context dependencies due to the multiple derivations of the loss function for

gradient calculation as described in Bengio et al. (1994). To address such issues,

several methods have been exploited, such as gradient clipping (Mikolov et al.,

2011a) that avoids aberrant changes in parameters and rectified linear unit (ReLU)

activations that restrict the gradient of the nonlinearity to be 0 or 1. Alternatively,

sophisticated mechanisms within the hidden layers such as long short-term mem-

ory (LSTM) (Hochreiter and Schmidhuber, 1997) and gated recurrent unit (GRU)

(Chung et al., 2014) have also been proposed. More details on these advanced

gating mechanisms are discussed in Chapter 6.

The RNN reward predictor takes as input the feature vectors ft described above

and updates its hidden layer ht at each turn t.2 Once the dialogue ends, the hidden

layer is then connected to an output layer to make a single reward prediction for

the whole dialogue, as depicted in Figure 4.2.

The network structure in the final layer is determined by the choice of supervised

training targets, of which two types were considered:

2 Convolutional neural networks were also investigated on the same task as in Su et al. (2015a)
However, only results using an RNN are shown here since it was found to be generally more robust.
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1) Classification model: in this case, the RNN is formulated as a binary classifier,

which is trained to predict success or failure for each dialogue. The targets are

{0,1}, and the final layer of the RNN outputs a scalar through a sigmoid activation

function and is trained with a cross-entropy loss. The output from this network

is a probability p that the dialogue is a success, and the hard class label predicted

by the model is taken as 1 if p > 0.5, else 0. This hard label is used to determine

whether to give a final reward of +20 during policy learning, as per Equation 4.3.

2) Regression model: in this case, the RNN is formulated as a regressor with

the actual return value used as the training target. The model’s final layer has no

non-linearity (activation) and the whole model is trained with a mean-square-error

(MSE) loss function. During subsequent policy learning using this predictor, the

per-turn penalty is suppressed since it is already considered by the RNN reward

predictor.

4.3 Training data and dialogue features

Building the proposed RNN reward prediction model requires a set of training data,

the human-machine dialogues and the corresponding task success annotations,

which was collected by training several GP-SARSA policies (Gašić and Young, 2014)

under various error rates (see Section 4.4 below) from scratch using an agenda-

based simulated user (Keizer et al., 2010b; Schatzmann et al., 2006). Each dialogue

was labelled as a success or failure using the objective criteria (Obj) described in

the introduction, that is, a dialogue was labelled as successful if all of the users’

goals randomly generated at the start of the dialogue were completed. The reward

function used during policy training gave -1 at each turn to encourage brevity

and +20 at completion if the dialogue was successful, otherwise 0. The return

(cumulative reward) ℜ was, therefore, calculated as follows:

ℜ = 20× 1(D)− N (4.3)
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where N is the number of dialogue turns and 1(D) is an indicator function for

success.

For all models, a feature vector was extracted at each turn consisting of the

following concatenated sections, which is also shown in Figure 4.3:

• a one-hot encoding of the user’s top-ranked dialogue act

• the real-valued belief state vector formed by concatenating the distributions

over all goals (area, price range, food type), methods and history variables

(Thomson and Young, 2010)

• a one-hot encoding of the summary system action

• the current turn number

Fig. 4.3 Feature vector ft extracted at each turn t.

This form of feature vector was motivated by considering the primary informa-

tion a human would need to read in a transcription in order to rate the success

of the dialogue. The inclusion of the belief vector, the user dialogue act and the

system’s actions make this feature vector domain and system dependent.

The aim of the reward predictor is to enable policy learning with real users

without prior knowledge of their goals. To do this, the model should consider

the information available at every dialogue turn and then evaluate whether the

policy provided everything that was requested. The hope is that by training the

reward model on data from simulated users, it will generalise and provide accurate

assessments of dialogues with real users whose goals are not known a priori.
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4.4 Experiments

The Cambridge restaurant domain is used for all the experimental work described

in this thesis. Users converse with the system to find restaurants in Cambridge

that match their required constraints such as food type and area. This Cambridge

restaurant domain consists of approximately 150 venues and each venue has six

attributes (slots) of which three (area, price range and food type) can be used by

the system to constrain the search and the remaining three (phone number, address

and postcode) are informable properties that can be queried by the user once a

database entity has been found.

4.4.1 The Core Spoken Dialogue Systems

Two operating modes are used in the experiments, live user trial mode and user

simulation mode.

• In live user trial mode, the core components of the SDS comprise a domain-

independent HMM-based speech recogniser, a confusion network (CNet)

semantic decoder (Henderson et al., 2012), the BUDS belief state tracker that

factorises the dialogue state using a DBN (Thomson and Young, 2010), a GP-

based dialogue policy (Gašić and Young, 2014), and a template-based natural

language generator (NLG) to map system actions into natural language

responses back to the user.

• In user simulation mode, an agenda-based simulated user is used to interact

with the system at the abstract dialogue act level (Keizer et al., 2010b; Schatz-

mann et al., 2006). In this mode, the system consists of only the BUDS belief

state tracker and the dialogue policy. The user simulator includes an error

generator (Schatzmann et al., 2007b), which can be set to generate user inputs

with different error rates at the semantic level, namely semantic error rates

(SER).
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The dialogue policy π maps the belief state b ∈ B, a distribution over all possible

dialogue states at each turn, to a system action a ∈ A, which in live mode is

converted into the natural language using the NLG component.

As explained in Chapter 3, the behaviour of an SDS is conditioned by a reward

function r(b, a) which for any given belief state b and action a defines the immediate

reward for that turn. Dialogue policy optimisation seeks to use RL to maximise the

total reward expected over each complete dialogue.

The Q-function as introduced in Equation 3.4 estimates the expected cumulative

reward 3 (also called the return) from any given belief state (b and action a to the

end of the dialogue. Optimising the Q-function is equivalent to optimising the

policy π.

For all of the experiments described in this chapter, the Q-function is modelled

by a GP:

Q(b, a) ∼ GP (m(b, a),k((b, a), (b, a))) , (4.4)

where m(·, ·) is the prior mean function and the kernel k(·, ·) is factored into separate

kernels over belief and action spaces kB(b,b′)kA(a, a′). The policy is optimised

using GP-SARSA (Engel, 2005; Gašić and Young, 2014) in which the Q-function is

updated by calculating the posterior given the collected belief-action pairs (b, a)

(dictionary points) and their corresponding rewards.

GP-based RL (GPRL) is particularly appealing since it can learn from a small

number of observations by exploiting the correlations defined by the kernel function

and, as a bonus, it provides a measure of the uncertainty in its estimates. This

knowledge of the distance between data points in the observation space greatly

speeds up policy learning since the Q-values of the unexplored space can be

estimated from the Q-values of nearby points. However, computation and model

complexity become intractable if every data point must be memorised. So instead,

3The total reward in RL often includes a discount factor to discount the value of future rewards.
Dialogues in a task-oriented SDS typically require only 6 or 7 turns, and they rarely extend beyond
20 turns. Hence the discount factor is normally set to 0.99 or 1.0.
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sparse approximation methods such as kernel span (Engel, 2005) are used to reduce

the size of stored training points.

Further reductions in data space requirements can be achieved by condensing

the action set into a fixed set of summary actions, which are then heuristically

mapped back into the master system action space using a set of hand-crafted rules

(Gašic, 2011). The summary action space consists of a set of slot-dependent and slot-

independent summary actions. Slot-dependent summary actions include requesting

the slot value, confirming the most likely slot value and selecting between the top

two slot values.

The summary action kernel is defined as kA(a, a′) = δa(a′), where δa(a′) = 1 if

a = a′ and 0 otherwise. The belief state consists of the probability distributions over

the Bayesian network hidden nodes that relate to the dialogue history for each slot

and the user goal for each slot. The dialogue history nodes can take a fixed number

of values, whereas user goals range over the values defined for that particular slot

in the ontology and can have very high cardinalities. User goal distributions are

therefore sorted according to the probability assigned to each value since the choice

of summary action does not depend on the values but rather on the overall shape

of each distribution. The kernel function over both dialogue history and user goal

nodes is based on the expected likelihood kernel Jebara et al. (2004), which is a

simple linear inner product. The kernel function for belief space is then the sum of

all the individual hidden node kernels:

kB(b,b′) = ∑
h
⟨bh,b′h⟩, (4.5)

where bh is the probability distribution encoded in the hth hidden node.

4.4.2 RNN-based Dialogue Success Prediction

The off-line reward estimator described in the previous section was implemented

using the Theano library (Bastien et al., 2012; Bergstra et al., 2010) with a hidden
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layer of 300 units and sigmoid activation units. All models were trained using

SGD (per dialogue) on data generated by three independently trained GP-based

policies interacting with a simulated user at a 15% semantic error rate (SER)

(Schatzmann and Young, 2009). One model was fully trained on a set of 18K

dialogues (train-18K), and the second model was trained on a smaller set of only

1K dialogues (train-1K). The contrast between the larger train-18K set and the

smaller train-1K set is provided to give some insight into the impact of reduced

availability of training data. A separate validation set of 1K dialogues was also

generated to avoid overfitting.

There were two test sets: a matched set of 1K dialogues generated at SER 15%

(testA) and a larger set containing 3K dialogues at each of four SERs: 0%, 15%, 30%,

and 45% (testB), where the latter provides an indication of how models perform

when there is a mismatch between train and test sets.

For each dialogue, the input features were represented as the concatenation of

four segments as shown in Figure 4.3, which were realised in two configurations, a

domain-dependent feature vector F617 and a domain-independent feature vector

F74 (Vandyke et al., 2015), where the subscripts denote the size of the vectors. For

F617, the number of elements were 21, 575, 20, and 1, respectively, for the most

likely user act, the full belief state (distributions over all values for each informable

slot: area, price range, food type and binary predictions on requestable slots), the

one-hot encodings for each of the system actions and the turn number normalised

by the maximum number of turns, which is 30 in this configuration. The one-hot

user dialogue act encoding was formed by taking only the most likely user act

estimated by the CNet semantic decoder. The user acts are described in Table 4.1.

Table 4.1 List of user dialogue acts in the F617 set.

hello inform request select confirm
affirm negate deny silence thankyou
ack bye hangup reqalts reqmore
confreq help repeat restart null
canthear
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The corresponding detailed descriptions of each user dialogue acts are illustrated

in A. Table 4.2 shows the list of the summary system actions.

Table 4.2 The list of summary system actions.

System Action Description
request_area system asks user to provide the value of area
request_pricerange system asks user to provide the value of price range
request_food system asks user to provide the value of food type
confirm_area system asks user to confirm the value of area
confirm_pricerange system asks user to confirm the value of price range
confirm_food system asks user to confirm the value of food
select_area system asks user to choose from two values of area
select_pricerange system asks user to choose from two values of price range
select_food system asks user to choose from two values of food
inform_1 system informs one slot-value with prob. > threshold
inform_2 system informs two slot-values with prob. > threshold
inform_3 system informs three slot-values with prob. > threshold
inform_byname system informs the name of an entity
inform_alternatives system informs an alternative entity
inform_requested system informs the value of the user-requested slots
inform_more system informs that there are more matched entities
reqmore system requests more information from the user
repeat system repeats the previous sentence
bye system says good bye
restart system restarts the conversation

The dimension of F617 contains two independent sources of domain dependent

variability: the number of slots/names and the slot cardinality (the number of

values within a slot). To eliminate the domain dependency, the issue of cardinality

is managed by replacing the full distributions over each slot (‘slot beliefs’) with

some predefined set of summary statistics of each distribution. Here normalised

entropy η is used:

η(s) = − ∑
v∈Vs

p(v)log(p(v))
log|Vs|

, (4.6)
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where s is the slot considered, v is the value that can be taken within the set Vs,

and the denominator log|Vs| represents the maximum of the slot’s entropy H(s)

(max{H(s)} = log|Vs|), which is also often referred to as the information length.

The remaining variability pertains to the differing number of slots across do-

mains. For the system that is experimented with, there is a fixed set of Na system

actions available for each slot S (e.g. ‘request-S ’ and ‘confirm-S ’). If a set has Ns

slots, then the variability is in the fact that the set will have Ns slot entropies, plus

Ns × Na slot dependent system actions.

This problem is mitigated by imposing a limit on the number of slots a domain

can have, and padding out the slot distribution summary (normalised entropy)

components along with the domain dependent system actions up to this limit. The

limit in the experiments is set to a maximum of 6 informable slots, making this

feature have a length of 74, which is represented as F74. It is important to maintain

an order to the components of this representation in order to give the RNN model

the opportunity to generalise to new domains.

The number of features in F74 were 21, 38, 14, 1, respectively, for the top user

act, the summarised belief state, the one-hot encoding of the domain-independent

system act and scaled turn number. The latter was designed to be a light-weight

feature vector applicable across multiple domains (Vandyke et al., 2015).

As described in Section 4.2, both RNN binary success classification models and

RNN reward regression models were trained. To verify the effectiveness of these

sequence models given the sequential inputs f1:N, a multilayer perceptron (MLP)

binary success classification models with one hidden layer of size 300 was tested.

This model can only handle fixed-length inputs, thus the averaged dialogue feature

favg =
∑N

i fi
N was computed as the model input. In addition, a count-based method

was also proposed, which calculated the success statistics for dialogues of different

turn numbers. The prediction at test time for a given dialogue is then the success

ratio of the corresponding turn numbers in the training data.
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Fig. 4.4 Prediction of the proposed model trained on 18K and 1K dialogues and
tested on sets testA and testB (see text). Results of success/failure label F-measure
(left axis) are represented as bars.

Figure 4.4 illustrates the performance of each comparing method, where the

y-axis is the F-measure of the success classification. All sub-figures show that

the RNN models (three solid bars on the left of each sub-figure) outperformed

all other methods. The count-based method shows that the number of turns is

highly correlated to dialogue success, while the additional features further helped

to improve the model accuracy as shown in other models. The comparison between

the RNN binary success classification model (black bar) with features set F617 and

the MLP binary success classification model (grey dotted bar) with set F617_avg

exhibits that the fix-length averaged feature lost certain information and thus

resulted in worse performance.

When using the large training set (18K, sub-figures 1 & 3), all RNN models

obtained an F-score above 0.93 on success label prediction and were within ∼±0.03

of the objective return targets on testA and within ∼ ±0.05 on testB.

Without the benefit of a simulated user, it may not be possible to obtain sufficient

labelled training dialogues to fully train the reward prediction model. However,

the results shown in sub-figures 4.4 (2) & 4.4 (4) suggest that the proposed models

were reasonably robust even with as few as 1000 training dialogues. In this case,

the RNN binary classification model is the most accurate.
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Fig. 4.5 Learning curve for the reward plotted as a function of the number of
training dialogues. The baseline system (red line) updates the policy only when
the Subj and Obj measures agreed. The blue line shows training using the RNN
dialogue success predictor. The lightly coloured bands denote one standard error.

For the case of RNN binary success classification, both input feature sets F617

and F74 were tested. The domain specific feature set F617 only slightly outper-

formed the domain independent F74 set. Therefore given the desirability of domain

independence, the remaining sections focus on the use of the F74 feature set.

Overall, these results suggest that an RNN model, sequentially processing turn

level features, can provide useful estimates of success and/or reward. The results

on set testB also show that the model can perform well in environments with

varying error rates as would be encountered in real operating environments.

4.4.3 Policy Learning with Human Users

Based on the above results, the binary RNN classification model with the feature

vector F74 was selected for training dialogue policies on-line. Two systems were

trained by users recruited via the Amazon mechanical turk (AMT) service. First,

an Obj=Subj system was trained only with the dialogues whose user Subj rating

matched the system Obj measurement. This, of course, requires knowledge of
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each task to compute the reward and hence would not be viable for a real system.

However, it serves as a useful baseline.

Second, a system was trained using only the RNN to compute the reward signal.

Note that a hand-crafted system is not used for comparison here since it does

not scale to larger domains and is sensitive to speech recognition errors. Three

policies were trained for each system and then averaged to statistically verify the

performance. Figure 4.5 shows how the success rate improves as a function of the

number of available training dialogues up to a maximum of 500 dialogues. For

both plots, the moving average was calculated using a window of 150 dialogues

and each result was the average of the three policies to reduce noise. The figure

shows that the final performance of the RNN system resulted in a comparable

policy to the baseline system. However, the baseline system actually required ∼ 850

dialogues (due to discarding the cases where Obj ̸=Subj). In contrast, the RNN

system was more data efficient and less costly since it used every dialogue.

The results indicate that the RNN dialogue success classifier is able to train a

policy at least as well as the baseline system even though the baseline required

prior knowledge of the users goal and selected only dialogues where the objective

and subjective success estimates agreed.

4.5 Summary

In this chapter, an off-line reward estimator is proposed which is trained from a

set of off-line simulated user data and avoids the need for prior task knowledge to

compute the reward on-line. The use of the RNN model for rating success in an

SDS is investigated, and the experiments have shown its effectiveness, especially

the transferability of the learnt model from simulated user data to real user data.

The design of the input features to the model is based on the turn-level interac-

tion between the user and the system. Two configurations, a domain-dependent

and a domain-independent feature vector, are presented, where the latter is shown
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to generalise better across different domains without losing much information

compared to the former.

One potential issue with this method is that the training data for the off-line

reward estimator may distribute differently to the on-line user population, which

may lead the policy learning towards an undesirable objective. To address this

problem, Chapter 5 provides an alternative solution for practical on-line policy

learning.



CHAPTER 5

Policy Learning with On-line Active Human Reward

Estimator

5.1 Motivation

Several approaches, including the work in Chapter 4, have been adopted for

learning a dialogue reward model given a corpus of annotated dialogues. For

example, Yang et al. (2012) used collaborative filtering to infer user preferences. It

has also been demonstrated that there is a strong correlation between an expert’s

user satisfaction rating and dialogue success (Ultes and Minker, 2015). However,

all these methods assume the availability of accurate dialogue annotations such

as expert ratings, which in practice are hard to obtain. Furthermore, the data for

training the off-line reward predictor described in Chapter 4 may be a poor match

to the user population used for on-line policy optimisation.

One effective way to mitigate the effects of annotator error in lower quality

annotations is to obtain multiple ratings for the same data, and several methods have

been developed to guide the annotation process using uncertainty models (Dai et al.,

2013; Lin et al., 2014). Active learning is particularly useful for determining when

an annotation is needed (Settles, 2010; Zhang and Chaudhuri, 2015), and it is often

implemented using Bayesian optimisation (Brochu et al., 2010). For example, Daniel

et al. (2014) exploited a pool-based active learning method for a robotics application.
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They queried the user for feedback on the most informative sample collected so

far and showed the effectiveness of this method. Active learning coupled with GP

regression has been previously used for dialogue policy optimisation and shown to

be more sample efficient than alternative methods (Gašić and Young, 2014).

Since humans are better at giving relative judgements than absolute scores,

another related line of research has focussed on preference-based approaches to

RL (Cheng et al., 2011). For example, in one study, users were asked to provide

rankings between pairs of dialogues (Sugiyama et al., 2012). However, this is also

costly and does not scale well in real applications.

An alternative is to learn a predictor directly on the real user population in

parallel with policy optimisation, with the label annotation provided by subjective

user feedback. However, as noted above, subjective user ratings, especially ones

collected via crowd-sourcing, tend to be inaccurate (Gašić et al., 2011), potentially

intrusive and hard to collect since users will often just ‘hang-up’ as soon as they

have the information they need. In this chapter, a GP-based reward estimator is

described which uses active learning to limit intrusive requests for feedback and a

noise model to mitigate the effects of inaccurate feedback (Su et al., 2016b).

The proposed system framework is depicted in Figure 5.1. It is divided into

two main parts: a dialogue embedding function, and an active reward model to

obtain user feedback and predict dialogue success. When each dialogue ends, a

sequence of turn-level features ft is extracted and fed into an embedding function σ

to obtain a fixed-dimension dialogue representation d that serves as the input to the

reward model. This reward is modelled as a GP which for every input d provides

an estimate of task success along with an estimate of the uncertainty. Based on

this uncertainty, the reward model decides whether to query the user for feedback.

It then returns a reinforcement signal to update the dialogue policy π, which is

trained using the GP-SARSA algorithm, as described in Section 4.4.1.

The reward model and the dialogue policy are being jointly optimised during

the sequence of dialogues. Initially, the joint learning process is supervised by the
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Fig. 5.1 Schematic depiction of the on-line reward estimator. The two main system
components, dialogue embedding creation, and reward modelling, based on user
feedback, are described in Section 5.2 and 5.3.

user feedback. Once learning is underway, the user supervision becomes lighter

and ultimately the learning becomes essentially unsupervised.

5.2 Dialogue Embeddings

The use of embedding functions for sequence modelling has recently gained atten-

tion especially for word representations, and it has boosted performance on several

natural language processing tasks (Levy and Goldberg, 2014; Mikolov et al., 2013;

Turian et al., 2010). Embedding has also been successfully applied to machine trans-

lation (MT) where it enables varying-length phrases to be mapped to fixed-length

vectors using an RNN Encoder-Decoder (Cho et al., 2014). Here an embedded

representation of the sequence of dialogue turn-level features is computed to drive

the reward model.

Two methods of generating dialogue embeddings have been explored, a super-

vised and an unsupervised approach. Once computed, these embeddings are used as

the observations for the reward model described in Section 5.3.
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Fig. 5.2 Unsupervised dialogue embedding using the LSTM Encoder-Decoder.

5.2.1 Supervised Dialogue Embedding

In this case, the RNN in Section 4.2 is used whereby the hidden layer hT at the final

turn T serves as the supervised dialogue representation ds to summarise the entire

dialogue in a single fixed-length vector. Note, however, that as with the off-line

reward estimator described in 4.2, this approach requires training data which is

expensive to collect and may be biased concerning the target population.

5.2.2 Unsupervised Dialogue Embedding

To avoid the need for labelled training data, an encoder-decoder structure can be

used to generate dialogue representations. The basic set-up is illustrated in Figure

5.2. Turn-level feature sequences ft are input to the model, encoded and then

decoded to reconstruct the input. The encoder is a bi-directional long short-term

memory network (BiLSTM) (Graves et al., 2013a; Hochreiter and Schmidhuber,

1997), which considers the sequential information from both directions of the

input data, computing the forward hidden sequences
−−→
h1:T and the backward hidden

sequences
←−−
hT:1 while iterating over all input features ft, t = 1, ..., T:
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Fig. 5.3 System architecture of long short-term memory (LSTM)

−→
ht = LSTM(ft,

−−→
ht−1)

←−
ht = LSTM(ft,

←−−
ht+1),

where LSTM (Hochreiter and Schmidhuber, 1997) includes the memory cell ct and

element-wise multiplication gates (input i, forget f and output o). These control the

information flow within the hidden layer to capture longer term dependencies than

the basic RNN. Its model and equations are shown in Figure 5.3 and as follows:

it = σ(Wxixt + Whiht−1 + Wcict−1) (input gate)

ft = σ(Wx f xt + Wh f ht−1 + Wc f ct−1) (forget gate)

ot = σ(Wxoxt + Whoht−1 + Wcoct−1) (output gate)

c̃t = tanh(Wxcxt + Whcht−1) (candidate memory cells)

ct = ft ⊙ ct−1 + it ⊙ c̃t (final memory cell)

ht = ot ⊙ tanh(ct) (final hidden state)
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where σ(·) is the non-linear activation (typically sigmoid), ⊙ is element-wise

multiplication, and Ws are the weight matrices between different gates it, ft,ot and

the cell ct. Note that these vectors have the same dimension as hidden layer ht.

The dialogue representation du is then calculated as the average over all hidden

sequences:

du =
1
T

T

∑
t=1

ht, (5.1)

where ht = [
−→
ht ;
←−
ht ] is the concatenation of the two directional hidden sequences.1

The decoder is a forward LSTM that takes du as its input for each turn t to produce

the sequence of features f′1:T. The encoder-decoder is trained by minimising the

mean-square-error (MSE) using SGD:

MSE =
1
N

N

∑
i=1

T

∑
t=1
||ft − f′t||2, (5.2)

where N is the number of training dialogues and || · ||2 denotes the l2-norm.

5.3 Active Reward Learning

5.3.1 Active Learning

Querying the user for feedback is costly and may have a negative impact on the user

experience. This can be reduced by using active learning based on an uncertainty

estimate of the model prediction. This ensures that user feedback is only sought

when the model is uncertain about its current prediction.

Active learning can be broadly categorised by its method of handling queries

into either pool-based or stream-based (on-line) active learning (Settles, 2010). The

pool-based method maintains a large pool of unlabelled data, and the goal is to

choose the most informative sample for querying the label from the expert to better

1Use of a bi-directional LSTM does not cause any difficulty at run time because we are only
interested in predicting success at the end of the dialogue.
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estimate the model parameters. On the other hand, for the stream-based method,

the unlabelled data is presented to the model one by one (on-line), and it then

decides whether or not it should ask the expert to label each incoming data point.

For the case here, on-line (stream-based) active learning is utilised. The main

reason is that after a user finishes the conversation with the system, it is much more

natural for the system to decide whether this dialogue should be labelled by the

current user rather than choosing a past dialogue (which was conducted by the

system and another user) from the pool to ask the current user to label.

5.3.2 Gaussian Processes Success Classifier

A GP is a Bayesian non-parametric model that can be used for regression or

classification (Bui et al., 2016; Rasmussen and Williams, 2006). As mentioned in

Section 4.4.1, it is particularly appealing since it can learn from a small number

of observations by exploiting the correlations defined by a kernel function, and it

provides a measure of uncertainty of its estimates. In the context of SDSs, it has

been successfully used for the RL policy optimisation (Casanueva et al., 2015; Gašić

and Young, 2014) and IRL reward function regression (Kim et al., 2014).

Here we propose modelling dialogue success as a GP. This involves estimating

the probability p(y|d,D) that the task was successful given the current dialogue

representation d and the pool D containing previously classified dialogues. We pose

this as a classification problem where the rating is a binary observation y ∈ {−1,1}

that defines failure or success. The observations y are considered to be drawn from

a Bernoulli distribution with a success probability p(y = 1|d,D). The probability is

related to a latent function f (d|D) :Rdim(d)→R that is mapped to a unit interval

by a probit function p(y = 1|d,D) = ϕ( f (d|D)), where ϕ denotes the cumulative

density function of the standard Gaussian distribution.

The latent function is given a GP prior: f (d) ∼ GP(m(d),k(d,d′)), where m(·)

represents the mean function and k(·, ·) represents the covariance function (kernel).
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Fig. 5.4 1-dimensional example of the proposed GP active reward learning model.

Here the stationary squared exponential kernel kSE is used. It is also combined

with a white noise kernel kWN to account for the ‘noise’ in users’ ratings:

k(d,d′) = p2 exp(−||d− d′||2
2l2 ) + σ2

n, (5.3)

where the first term denotes kSE and the second term denotes kWN.

The hyper-parameters p, l, and σn can be optimised by maximising the marginal

likelihood using a gradient-based method (Chen et al., 2015). Since ϕ(·) is not linear,

the resulting posterior probability p(y = 1|d,D) is analytically intractable. Thus,

instead, approximate optimisation was performed using expectation propagation

(EP) (Nickisch and Rasmussen, 2008).

A 1-dimensional example is shown in Figure 5.4. Given the labelled data D, the

predictive posterior mean µ∗ and posterior variance σ2
∗ of the latent value f (d∗)

for the current dialogue representation d∗ can be calculated. Then a threshold

interval [1− λ,λ] is set on the predictive success probability p(y∗ = 1|d∗,D) =
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ϕ(µ∗/
√

1 + σ2
∗) to decide whether this dialogue should be labelled. The decision

boundary implicitly considers both the posterior mean as well as the variance.

When deploying this reward model in the proposed framework, a GP with

a zero-mean prior for f is initialised and D = {}. After the dialogue policy π

completes each episode with the user, the generated dialogue turns are transformed

into the dialogue representation d = σ(f1:T) using the dialogue embedding function

σ. Given d, the predictive mean and variance of f (d|D) are determined, and the

reward model decides whether it should seek user feedback based on the threshold

λ on ϕ( f (d|D)). If the model is uncertain, the user’s feedback on the current

episode d is used to update the GP model and to generate the reinforcement signal

for training the policy π; otherwise, the predictive success rating from the reward

model is used directly to update the policy. This process takes place after each

dialogue.

5.4 Experiments: Joint Dialogue Policy and Reward

Learning

5.4.1 Experimental Settings

All of the experimental work used the target domain and SDS structure described

in Section 4.4.1. Policy training used the reward given by Equation 4.3, and the

maximum dialogue length was set to 30. The on-line system used paid subjects

recruited via the AMT service. Each user was assigned specific tasks in a given

sub-domain and then asked to call the system in a similar setup to that described

in (Gašić et al., 2013; Jurčíček et al., 2011). After each dialogue, the users were

asked whether they judged the dialogue to be successful. Based on that binary

rating, the subjective success and the average reward was calculated. An objective

rating was also computed by comparing the system outputs with the assigned task

specification.
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5.4.2 Supervised and Unsupervised Dialogue Representations

The supervised RNN model described in Section 5.2.1 and the LSTM Encoder-

Decoder model described in Section 5.2.2 were used to generate supervised and un-

supervised representations ds and du for each dialogue. The domain-independent

feature vector F74 was used as the input of both embedding models and the tar-

get for the LSTM Encoder-Decoder model, where in the latter case, the training

objective was to minimise the MSE of the reconstruction loss.

For the supervised embedding, the size of hidden layer ds, was set to 32. In the

unsupervised case, the sizes of
−→
ht and

←−
ht in the encoder and the hidden layer in

the decoder were all 32, resulting in dim(ht) = dim(du) = 64. SGD per dialogue

was used to train each model. To prevent over-fitting, early stopping was applied

based on the held-out validation set.

The data used to train the supervised dialogue embedding were the simulated

dialogues train-1K and the validation set, as specified in Section 4.4.2, and testA

served as the test set. This dataset is denoted by sim. The embedding function

was thus effectively the intermediate product created during the training of the

RNN-based off-line reward model described in Section 4.4. For the unsupervised

dialogue embedding, two datasets were investigated: first, the same dataset used

to train the supervised embedding as mentioned above; and second, a corpus

consisting of 8565, 1199 and 650 real user dialogues in the Cambridge restaurant

domain was used for training, validation and testing, respectively. This dataset

is denoted by real. This corpus was collected in previous user trials using paid

subjects recruited via the AMT service.

To visualise the effect of the embeddings, all of the test dialogues were trans-

formed using the two embedding functions and the resulting representations dsim
s ,

dsim
u and dreal

u were plotted using t-SNE (Van der Maaten and Hinton, 2008). The

results are shown in Figure 5.5, 5.6a and 5.6b. For each dialogue sample, the shape

indicates whether the dialogue was successful, and the colour indicates the length
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Fig. 5.5 t-SNE visualisation on the supervised dialogue representations ds of the
simulated data in the Cambridge restaurant domain. Labels are the subjective
ratings from the users, and colours represent the total length of each dialogue.

(a) Simulated data in the Cambridge restau-
rant domain.

(b) Real user data in the Cambridge restaurant
domain.

Fig. 5.6 t-SNE visualisation on the unsupervised dialogue representations du of
different data. Labels are the subjective ratings from the users, and colours represent
the total length of each dialogue.



72 Policy Learning with On-line Active Human Reward Estimator

of the dialogue (maximum 30 turns). Figure 5.5 shows that the supervised embed-

ding function trained on simulated data separates successful and failed dialogues

into two categories. It is also clear that in simulation, the successful dialogues were

mostly short and the failed ones were mostly aborted when the 30-turn limit was

reached.

The patterns for the unsupervised embedding trained on both data are rather

different, which are shown in Figure 5.6a and 5.6b. In Figure 5.6a, the successful

dialogues are distributed according to dialogue length from the bottom left (shorter

dialogues) to the top right (longer dialogues). Compared to the patterns in Figure

5.5, the separation between successful and failed dialogues are less obvious since

the unsupervised embedding function was trained without success labels. Similar

patterns can be found in Figure 5.6b. These figures show that dialogue length was

one of the most prominent features in the unsupervised dialogue representations

dsim
u and dreal

u . Also for the dataset real, the failed dialogues were distributed over

the length range, and the successful dialogues were on average shorter than ten

turns.

Investigating these two datasets sim and real, whilst simulated and real data

follow similar patterns in successful dialogues, typified by short conversations and

clear information exchange between the user and the system, there is much more

diversity in the real dialogues. This is especially the case for failed dialogues where

real users halt the conversation as soon as they lose patience, whereas simulated

users persist until the maximum turn limit is reached.

5.4.3 Dialogue Policy Learning

Given well-trained dialogue embedding functions, the proposed GP reward model

operates on the embedded input space. The system was implemented using the

GPy library (Hensman et al., 2012). Given the predictive success probability of each

newly seen dialogue, the threshold λ for the uncertainty region was initially set

to 1 to encourage label querying and annealed to 0.85 over the first 50 collected
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Fig. 5.7 Learning curves showing subjective success as a function of the number
of training dialogues used during on-line policy optimisation. The on-line GP
supervised, on-line GP unsupervised and Obj=Subj systems are shown as green, black,
and red lines. The light-coloured areas are one standard error intervals.

dialogues and then fixed at 0.85 thereafter. To determine a suitable threshold,

various λ values were tested in simulation: 0.55, 0.65, 0.75 and 0.85. The policy

with λ = 0.85 achieved the best success learning rate while requiring slightly

more queries to the user compared to other λs since it was more uncertain of its

prediction. Since all four models highly reduced the queries to the user with no

huge difference of query numbers between each other, in real user trials, λ was

set to 0.85 to ensure the best policy learning performance. Initially, as each new

dialogue was added to the training set, the hyper-parameters that define the kernel

structure defined in Equation 5.3 were optimised to minimise the negative log

marginal likelihood using conjugate gradient ascent (Rasmussen and Williams,

2006). To prevent overfitting, after the first 40 dialogues, these hyper-parameters

were only re-optimised after every batch of 20 dialogues.

Two systems: on-line GP supervised and on-line GP unsupervised were trained

with a total of around 350 dialogues on-line by users recruited via the AMT

service. Figure 5.7 shows the on-line learning curve of subjective success during
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training. For each system, the moving average was calculated using a window of

150 dialogues. In each case, three distinct policies were trained, and the results

were averaged to reduce noise.

The figure shows that both systems had better than 80% subjective success

rate after approximately 200 training dialogues. the supervised model performed

slightly better during the learning process, and both converged to similar perfor-

mance. This may be because the supervised embedding function was trained with

knowledge of the objective success, and this is correlated to the subjective success

ratings of real users. Nevertheless, after 300 dialogues, both embeddings achieve

similar performance suggesting that the unsupervised embedding is perfectly ade-

quate for the task, and it has the significant advantage that it can be trained on real

data without annotations. In the following, the unsupervised method was therefore

chosen for further investigation.

In addition to the above comparisons, two other systems were explored which

used different methods to compute the reward:

• the Subj system which directly optimises the policy using only the user’s

subjective assessment of success whether the assessment is accurate.

• the off-line RNN system that uses 1K simulated data and the corresponding

Obj labels to train an RNN success estimator as in Section 4.4.2, where the

cross-entropy loss function and sigmoid activations were adopted.

For the Subj system rating, to focus solely on the performance of the policy

rather than other aspects of the system such as the fluency of the reply sentence,

users were asked to rate dialogue success by answering the following question: Did

you find all the information you were looking for?

Figure 5.8 shows the on-line learning curve of the subjective success rating with

the moving average of 150 dialogues when training the three systems: on-line GP

(with unsupervised embedding), Subj, and off-line RNN. In each case, three distinct
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Fig. 5.8 Learning curves showing subjective success as a function of the number
of training dialogues used during on-line policy optimisation. The on-line GP,
Subj, and off-line RNN systems are shown as black, yellow, and blue lines. The
light-coloured areas are one standard error intervals.

policies were trained and the results were averaged to reduce noise. The systems

were trained with 500 dialogues on-line by users recruited via the AMT service.

The figure shows that all three systems perform better than 85% subjective

success rate after approximately 500 training dialogues. To investigate learning

behaviour over longer spans, training for the on-line GP and the Subj systems was

extended to 850 dialogues. The figure also shows that the performance in both

cases is broadly flat.

Similar to the conclusions drawn in Gašić et al. (2011), the Subj system appears

to suffer from unreliable user feedback. As with the Obj=Subj system in Figure

4.5, this is partly due to users forgetting the full requirements of the task and, in

particular, they forget to ask for all the required information. Figure 5.8 shows

that the on-line GP system consistently performed better than the Subj system,

presumably, because its noise model mitigates the effect of inconsistency in user

feedback. Of course, unlike crowd-sourced subjects, real users might provide more
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Fig. 5.9 The number of system queries for the user feedback during on-line policy
learning as a function of the number of training dialogues. The orange line
represents the Subj system, and the black line represents the on-line GP system.

consistent feedback, but, nevertheless, some inconsistency is inevitable and the

noise model offers the needed robustness.

The advantage of the on-line GP system in reducing the system requests for the

user feedback (i.e. the label cost) can be seen in Figure 5.9. The black curve shows

the number of active learning queries triggered in the on-line GP system averaged

across the three policies. This system required only 150 user feedback requests

to train a robust reward model. On the other hand, the Subj system requires user

feedback for every training dialogue, as shown by the dashed orange line (of course,

the same applies to the Obj=Subj system in the previous experiment).

Certainly, the off-line RNN system required no user feedback at all when training

the system on-line since it had the benefit of prior access to a user simulator. Its

performance during training after the first 300 dialogues was, however, inferior to

the on-line GP system.
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5.4.4 Dialogue Policy Evaluation

To compare performance, the averaged results obtained between 400–500 training

dialogues are shown in the first section of Table 5.1 along with one standard error.

For the 400–500 interval, the Subj, off-line RNN and on-line GP systems achieved

comparable results without statistical differences. The results of continuing training

on the Subj and on-line GP systems from 500 to 850 training dialogues are also shown.

The table shows that the on-line GP system was significantly better, presumably

because it is more robust to erroneous user feedback compared to the Subj system.

Table 5.1 Subjective evaluation of the off-line RNN, Subj and on-line GP system
during different stages of on-line policy learning. Subjective: user binary rating on
dialogue success. Statistical significance was calculated using a two-tailed Student’s
t-test with a p-value of 0.05.

Dialogues Reward Model Subjective (%)

400-500

off-line RNN 89.0 ± 1.8
Subj 90.7 ± 1.7

on-line GP 91.7 ± 1.6

500-850 Subj 87.1 ± 1.0
on-line GP 90.9 ± 0.9*

* p < 0.05

5.4.5 Reward Model Evaluation

The results in Figures 5.8, 5.9 and Table 5.1 shows the advantage of the proposed

reward model for policy learning. This section further investigates the accuracy of

the on-line GP model in predicting the subjective success rate. An evaluation of the

proposed model between 1 and 850 training dialogues is shown in Table 5.2.

Since three reward models were learnt, each with 850 dialogues, there were a

total of 2550 training dialogues. Of these, the on-line GP model queried the user for

feedback a total of 454 times, leaving 2096 dialogues for which learning relied on
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the reward model’s prediction. Therefore, for a fair comparison, results shown in

the table are averaged over 2096 dialogues.

The table shows that there was a significant imbalance between successful and

failed dialogues since the policy was improving along with the training dialogues.

This lowered the recall on failed dialogue prediction is expected since the model is

biased toward successful dialogues. Overall, however, performance as judged by

F-measure appears to be adequate.

Table 5.2 Statistical evaluation of the prediction of the on-line GP systems with
respect to Subj rating.

Subj Precision Recall F-measure Number
Fail 1.00 0.52 0.68 204
Suc. 0.95 1.00 0.97 1892
Total 0.96 0.95 0.95 2096

5.4.6 Example Dialogues

The key benefits of the on-line GP reward model compared to other models are its

robustness to noise and efficient use of user supervision. Since the four systems

compared above differ only in the design of reward model (learning objective),

their on-line behaviours were broadly similar.

Two example dialogues between users and the on-line GP system are listed in

Table 5.3 to illustrate how the system operates under different noise conditions. The

user’s subjective rating and the rating determined by the on-line GP reward model

are also shown. The labels ‘n-th ASR’ and ‘n-th SEM’ indicate the n-th most likely

hypotheses from the speech recogniser and the semantic decoder, respectively.

5.4.7 On-line v.s. Random Queries for GP Reward Estimation

To verify the benefit of the uncertainty measurement for on-line active user label

querying, the proposed model was tested in simulation in comparison to the case

where the user label was queried every other dialogue. The unsupervised dialogue
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Fig. 5.10 Learning curves showing subjective success as a function of the number
of training dialogues used during on-line policy optimisation in the simulation.
The GP with on-line active queries and GP with random queries systems are shown as
orange and blue lines.

embedding function was utilised for both policies and the query threshold λ for

the proposed model was set to 0.85. To simulate the noisy label from the user,

the simulated user gave the wrong success label 35% of all time. Also, to prevent

overfitting, after the first 40 dialogues, these hyper-parameters in Equation 5.3

were only re-optimised after every batch of 20 dialogues. Figure 5.10 illustrates

the success rate learning curve of the two policy. One can clearly see that the

blue line: GP with random queries (which queried the user label every other

dialogue) saturated at a sub-optimal policy while the orange curve continued to

grow its success rate up to around 93%. This indicates that the GP reward model’s

uncertainty estimation indeed helped to figure out which useful user success labels

to ask for. On the other hand, the random sample from the user label inevitably

confused the GP reward model with inconsistent success labels.
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5.5 Summary

Computing a reliable reward function for training a dialogue policy on-line using

RL is difficult since the user’s objective is usually unknown. Directly querying

the user at the end of each dialogue is equally problematic, since the resulting

feedback is often inaccurate and repeated, querying for feedback can be intrusive.

This chapter explores the design of an on-line learning framework, whereby the

dialogue policy is jointly trained alongside the reward function modelled as a

GP with active learning. To provide a fixed size input space for the GP, variable

length dialogue turn sequences are embedded using both a supervised RNN and

an unsupervised RNN-based encoder-decoder. Both perform similarly, but the

latter has the advantage of requiring no task success annotation and can therefore

be trained on unlabelled corpora.

This on-line reward model enables stable policy optimisation by robustly mod-

elling the inherent noise in real user feedback and uses active learning to minimise

the number of feedback requests to the user. The proposed on-line reward model

achieved efficient policy learning and better performance compared to other state-

of-the-art methods in the Cambridge restaurant domain. A key advantage of this

Bayesian model is that its uncertainty estimate allows active learning and noise

handling in a natural way. This mitigates the two key problems of requesting direct

user feedback: it minimises the intrusive nature of asking for feedback, and it

successfully filters inaccurate user responses.

Overall, the techniques developed in this chapter enable for the first time viable

approaches to on-line learning in deployed real-world dialogue systems. Dialogue

policies can be learned from scratch without requiring the collection and annotation

of bootstrap training data or the construction of a user simulator.

The reward function studied here is focussed primarily on task success, and

this may be too simplistic for many commercial applications. Further work may,

therefore, be needed in conjunction with human interaction studies to identify and
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incorporate the further dimensions of dialogue quality needed to optimise user

satisfaction. Nevertheless, task success is likely to remain the principal component

of user satisfaction for the majority of applications; and hence the work reported

here should be a major step forward in the practical deployment of systems which

can learn and improve on-line without manual intervention.

On the other hand, another issue of the current RL-based dialogue policy is

the sparsity of the given reward from the world (user). The system is only able to

receive the most important information of the dialogue success by the end of the

conversation and thus learns in-efficiently. Consequently, the next chapter focuses

on enriching the reward signal to achieve more efficient learning.
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Table 5.3 Example dialogues between on-line users and the proposed on-line GP
system.

-Low noise condition- (User Subjective Evaluation: Success, on-line GP Evaluation: Success)
Machine : Hello, welcome to the Cambridge dialogue system, what kind of food would you like?
Human : [Top ASR] Yeah I want to find a restaurant that serves European food.

[Top SEM] inform(food=european,type=restaurant)
Machine : Hotel du Vin and Bistro is a nice place. It serves European food.
Human : [Top ASR] Uh what is the address and phone number?

[Top SEM] request(phone,addr)
Machine : Hotel du Vin and Bistro is a nice place. Their address is 15-19 Trumpington Street and their phone is 01223 227330.
Human : [Top ASR] Thank you goodbye.

[Top SEM] bye()
Machine : Thank you for using this system.

-High noise condition- (User Subjective Evaluation: Success, on-line GP Evaluation: Success)
Machine : Hello, welcome to the Cambridge dialogue system, What kind of food would you like?
Human : [Top ASR] And I want to find an expensive restaurant it should be in the south part of town.

[Top SEM] inform(area=south,pricerange=expensive,type=restaurant)
Machine : Gourmet burger kitchen is a nice place it is in the expensive price range.
Human : [Top ASR] And do you have something else?

[Top SEM] null()
[2nd SEM] reqalts()

Machine : Did you say you are looking for a venue in the area of south ?
Human : [Top ASR] Yes.

[Top SEM] affirm()
Machine : Frankie and Benny’s is a nice place, it is in the south part of town and it is in the expensive price range.
Human : [Top ASR] Okay can I have the uh address phone number called for any.

[Top SEM] request(addr)
[2nd SEM] request(phone,addr)

Machine : Frankie and Benny’s is a nice place. Their address is Clifton Way and their phone number is 01223 412430.
Human : [Top ASR] What is the pub called for free you any?

...
[5th ASR] What is the post code for free you any?
[Top SEM] request(postcode)

Machine : Frankie and Benny’s is a nice place. Their postcode is C.B 1, 7 D.Y.
Human : [Top ASR] Thank you goodbye.

[Top SEM] bye()
Machine : Thank you for using this system.



CHAPTER 6

Accelerating Policy Learning with Reward Shaping

6.1 Motivation

The mathematical explanation and literature review of reward shaping has been

presented in Section 3.2.6; in this section, its usage is developed with the goal of

speeding up the policy learning of SDS in on-line settings via the RNN models. An

alternative form of RNN setting compared to the one in Figure 4.2 of Section 4.2

is utilised with the introduction of new training constraints to combine the three

following features:

1. Diffuse the dialogue level ratings down to the turn level.

2. Add reward shaping information for faster policy learning.

3. Avoid using prior task knowledge, which is in practice unavailable on-line.

The core idea here is using the RNN models to determine adequate values

(information) to add as a potential ϕ in Equation 3.29 to the existing learning

systems’ reward function in order to guide the system to achieve the desired

objective faster.
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6.1.1 Operating environment and dialogue features

In all experiments, the Cambridge restaurant domain was used where the domain

ontology and shared components within the SDS are illustrated in Section 4.4.1.

GP-SARSA (Gašić and Young, 2014) was employed for dialogue policy optimisation,

and the summary action space contains 20 actions. A per-turn reward of -1 was used

and the final reward of 20 was assigned if the dialogue was successful; otherwise, a

final reward of 0 was assigned.

As mentioned in Sections 4.3 and 4.4.2, the feature vector of full size F within

the ontology has been shown to be redundant, whereas the domain independent

features F74 enable cross-domain applications whilst only slightly sacrificing pre-

diction accuracy. Here, since only a single domain is considered, the feature vector

applied is based on F74 but has more domain dependent elements. For instance,

rather than using the single slot-independent action (e.g. ‘request’), it is mapped

back to the slot dependent system actions (e.g. {‘request-S1’, . . . , ‘request-SNs ’}),

providing the feature vector with the exact slot the system is focussing on. In

addition, the normalised entropy representing the slot statistics, as in Equation 4.6,

was also replaced by its original distribution over each value within a slot. The

resulting feature vector is in the form as follows: one-hot encodings of each of the

system action and most likely user action (as estimated by the belief tracker), full

belief state (distributions over slot values) and normalised turn number (by 30). It

is of size 147, and is used in all of the experiments reported in this chapter.

6.1.2 RNN model structures for reward shaping

RNN models with basic/LSTM/GRU recurrent units are adopted to manage the

variable length of each dialogue by updating a hidden layer ht with the input

feature ft at each turn t. The architecture of the RNN with the basic recurrent unit

and the LSTM recurrent unit are described in Section 4.2 and Section 5.2.1.
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Fig. 6.1 System architecture of gated recurrent unit (GRU).

Looking into the operating mechanisms within the GRU recurrent units (Chung

et al., 2014), instead of maintaining a memory cell in LSTM as described in Section

5.2.1, it directly utilises a reset gate rt and an update gate zt to control the memory

flow between hidden layers in different time-stamps. This is illustrated in Figure

6.1 and detailed as follows:

zt = σ(Wxzxt + Whzht−1) (update gate)

rt = σ(Wxrxt + Whrht−1) (reset gate)

h̃t = tanh(Wxhxt + rt ⊙Whhht−1) (candidate hidden state)

ht = (1− z)⊙ h̃t + z⊙ ht−1 (final hidden state)

There has not been a clear conclusion drawn on the comparison between the

LSTM and GRU to date (Jozefowicz et al., 2015). Despite the extra complexity

introduced, these two variations have been found to improve the performance of

the basic RNN in many NLP tasks (Kumar et al., 2015; Sundermeyer et al., 2012).

The role of the RNN model is to solve the regression problem of predicting

the scalar return of each completed dialogue. At every turn t, an input feature
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Fig. 6.2 RNN with three types of hidden units: basic, LSTM and GRU. The feature
vectors ft extracted at turns t = 1, . . . , T are labelled ft.

ft is extracted from the belief/action pair and used to update the hidden layer

ht. From dialogues generated by a simulated user (Schatzmann and Young, 2009),

supervised training pairs are created that consist of the turn level sequence of these

feature vectors ft along with the scalar dialogue return as scored by an objective

measure of task completion. While the RNN models are trained on dialogue level

supervised targets, it is hypothesised that their subsequent turn level predictions

can guide policy exploration by acting as informative reward shaping potentials ϕ.

To encourage good turn level predictions, all three RNN variants are trained to

predict the dialogue return not just with the final output of the network but with

the constraint that their scalar outputs from each turn t should sum to predict the

return for the whole dialogue. The loss function and the connection between the

output layer and the hidden layers are different from that in Section 4.2; because in

that previous case, the goal is to predict as precisely as possible the final dialogue-

level rating, while the focus in this case is to determine accurate turn-level ratings.

This RNN model structure is shown in Figure 6.2, and a mean-square-error (MSE)

loss on a per-dialogue basis is used:

MSE =

(
T−1

∑
t=0

rt −R
)2

, (6.1)
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where the current dialogue has T turns, R is the dialogue return and training target,

and ri is the scalar prediction output by the RNN model at each turn. The trained

RNN models are then used directly as the reward shaping potential function ϕ,

using the RNN scalar output given the input st at each turn t. As shown in Equation

3.29, the turn-level shaping reward is thus: F(bt, at,bt+1) = γϕ(bt+1)− ϕ(bt). As a

consequence, the final composite reward R′(bt, at) = R(bt, at) + F(bt, at,bt+1) at each

turn t is used for the policy learning, where R(bt, at) is the original environmental

reward.

6.2 Experiments

6.2.1 Neural Network Training for Return Prediction

This section presents the results of training the 3 RNN models on the simulated

user dialogues. In all cases the hidden layer contained 100 units with a sigmoid

non-linearity and used SGD (per dialogue) for training. The training, validation

and test set used here are similar to those in Section 4.4.2: train-18K, train-1K,

testA, testB, and again the separate validation sets of 1K dialogues were used for

controlling overfitting while training.

The Root-MSE (RMSE) result of predicting the dialogue return are depicted in

Figure 6.3. Note that the predictions were unbounded and the averaged return is

around 8–10. Hence the worst RMSE could be as more than 100. In all cases, the

RMSEs are around 5–7, which indicates high similarity of the patterns between

the sum of predicted turn-level ratings to the true return values. The results

are encouraging because one of the crucial characteristics of reward shaping is

assigning an appropriate ‘extra’ turn-level penalty or reward to the learning system

for speed-up. The models with LSTM and GRU units achieved a slight improvement

in most cases over the basic RNN. Notice that the model with GRU even reached

comparable results when trained with 1K training data compared to 18K. The

results from the 1K training set indicate that the model can be developed from
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Fig. 6.3 RMSE of return prediction by using RNN/LSTM/GRU, trained on 18K and
1K dialogues and tested on sets testA and testB (see text).

limited data. The results on set testB also show that the models can perform well

in situations with varying error rates as would be encountered in real operating

environments. The dataset could also be created from human annotations, which

would avoid the need for a simulated user. In the following sections, the focus is to

examine the RNN-based reward shaping for the policy training with a simulated

user and human users.

6.2.2 Policy Learning with a Simulated User

Since the aim of reward shaping is to enhance the speed of policy learning, the

emphasis is placed on the first 1000 training dialogues. Figure 6.3 shows that

the RNN with GRU recurrent unit attained slightly better performance than the

other two RNN models, albeit with no statistical significance. Thus for the clearer

presentation of the policy training results, only the GRU results are plotted, using

the model trained on 18K dialogues.

To show the effectiveness of using RNN with GRU for predicting reward

shaping potentials, the proposed method is compared with the hand-crafted (HDC)
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Fig. 6.4 Policy training with a simulated user with (GRU/HDC) and without
(Baseline) reward shaping (RS). Standard errors are also shown.

method for reward shaping used in (Ferreira and Lefèvre, 2013) that requires prior

knowledge of the user’s task and a baseline policy using only the environmental

reward. Figure 6.4 shows the learning curve of the cumulative reward (return) for

the three systems. After every 50 training iterations, each system was tested with

1000 dialogues and averaged over ten policies. The simulated user’s SER was set to

15%.

We see that reward shaping indeed provides the agent with more information

and increases the learning speed within training dialogues 0–500, while achieving

similar performance after 500 training dialogues. Moreover, the proposed RNN

method outperforms the hand-crafted system in the early stages of the training,

while also being able to be applied on-line.

To inspect how exactly the proposed model helps in each turn, Figure 6.5 pro-

vides a qualitative analysis of the turn-level prediction of the proposed GRU model

on one successful simulated dialogue example, where the system provided the
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Fig. 6.5 Turn-level predictions of the GRU model in a successful dialogue example.
They serve as the potential function ϕ (black dashed line) in Equation 3.28 and the
corresponding shaping rewards F (grey solid line) are also presented.

desired information the user was asking for. The black dashed line is the predic-

tion from the GRU, which also serves as the potential function ϕ(bt) mentioned

in Equation 3.28. The grey solid line represents the additional shaping reward

F(bt, a,bt+1) = γϕ(bt+1)− ϕ(bt) to be added to the original reward setting. In this

successful five-turn dialogue example, a matched restaurant was determined and

informed given the user’s search constraints. The system then provided the re-

quested information such as phone number and address to the user. Along with

this successful dialogue progress, the GRU predictions ϕ gradually increased. This

illustrates that the proposed model has learned to make appropriate estimations

on intermediate dialogue turns. It is worth mentioning that the GRU model has

learned to predict higher ϕ(bt) and led to higher shaping reward F when the system

started to provide the contact information of the restaurant asked by the user. In

this case, the user implicitly agreed that the system had provided his/her desired

restaurant and this usually lead to a successful dialogue.
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Fig. 6.6 Policy training in on-line human user scenarios for the baseline (black) and
proposed GRU RS (red) systems. Standard errors are also shown.

6.2.3 Policy Learning with Real Users

Based on the above results, the same GRU model was selected for training a policy

on-line with humans. Two systems were trained with users recruited via AMT:

a baseline was trained with only the environmental reward, and another system

was trained with an additional shaping reward predicted by the proposed GRU.

Learning began with a random policy in all cases.

Figure 6.6 shows the on-line learning curve of the reward when training the

systems with 400 dialogues. The moving average was calculated using a window

of 100 dialogues and each result was averaged over three policies to reduce noise.

Consistent with the results based on user simulation in Section 6.2.2, by adding the

RNN based shaping reward, the policy learnt quicker in the important initial phase

of policy learning.
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6.3 Summary

This chapter has shown that RNN models can be trained to predict the dialogue

return with the constraint that subsequent turn level predictions act as good reward

shaping signals that are effective for accelerating policy learning on-line with real

users. As in many other applications, we found that gated RNNs such as LSTM

and GRU perform slightly better than basic RNNs.

In the work described in this section, the RNNs were trained using a simulated

user, and this simulator could have been used to bootstrap a policy for use with

real users. However, the supposition is that RNNs could be trained for reward

prediction which are substantially domain independent and hence have wider

application via domain adaptation and extension.

In addition to utilising neural network models for predicting reward, in recent

years deep neural networks have been applied to RL-based policy optimisation

(deep RL) and have shown success in various large-scale tasks (Mnih et al., 2013;

Silver et al., 2016). However, deep RL suffers from low sample-efficiency and

instability in learning. In the next chapter, several deep RL methods for learning a

dialogue policy as well as proposing approaches for speeding up and improving

learning stability.



CHAPTER 7

Learning Sample-efficient Deep RL Policies

7.1 Motivation

RL-based approaches to dialogue management have been actively studied and

shown to be effective for many years (Lemon et al., 2006; Levin et al., 1998). As

described in Section 4.4.1, data-efficient methods such as GPs have enabled systems

to be trained from scratch via on-line interaction with real users (Gašić et al.,

2011; Gašić and Young, 2014). GP provides an estimate of the uncertainty in the

underlying function and a built-in noise model. This helps to achieve highly

sample-efficient exploration and robustness to recognition/understanding errors.

However, since the computation in GP scales with the number of points mem-

orised, sparse approximation methods such as the kernel span algorithm (Engel,

2005) must be used, and this limits the ability to scale to very large training sets.

It is therefore questionable as to whether GP can scale to support commercial

wide-domain SDS. Nevertheless, GPs provide a strong benchmark, and hence it is

included in the evaluation in this chapter.

On the other hand, deep RL methods have been shown to have significant

potential for dialogue policy optimisation due to their high scalability and flexibility

(Gu et al., 2016; Levine et al., 2016; Mnih et al., 2013; Silver et al., 2016). However,

they typically learn slowly using gradient-based methods, which is especially
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problematic for on-line learning with real users. To address this problem, this

chapter makes two contributions:

1. improve the sample-efficiency of actor-critic RL: TRACER and eNACER.

2. efficient utilisation of demonstration data for improved early stage policy

learning.

The first part focusses primarily on increasing the RL learning speed. For

TRACER, trust regions are introduced to the standard actor-critic to control the

step size and thereby avoid catastrophic model changes. For eNACER, the natural

gradient identifies the steepest ascent direction in policy space to ensure fast

convergence. Both models exploit off-policy learning with experience replay (ER)

to improve sample-efficiency. These are compared with various state-of-the-art RL

methods.

The second part aims to mitigate the cold start issue by using demonstration data

to pre-train an RL model. This resembles the training procedure adopted in recent

game playing applications (Hester et al., 2017; Silver et al., 2016). A key feature of

this framework is that a single model is trained using both SL and RL with different

training objectives but without modifying the architecture.

By combining the above, we demonstrate a practical approach to learning

deep RL-based dialogue policies for new domains which can achieve competitive

performance without significant detrimental impact on users in the early stage of

learning.

Combining SL with RL for dialogue modelling is not new. Henderson et al.

(2008) proposed a hybrid SL/RL model that, to ensure tractability in policy op-

timisation, performed exploration only on the states in a dialogue corpus. The

policy was then defined manually on parts of the space which were not found

in the corpus. A method of initialising RL models using logistic regression was

also described (Rieser and Lemon, 2006). For GP-SARSA in dialogue, rather than

using a linear kernel that imposes heuristic data pair correlation, a pre-optimised
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Gaussian kernel learned using SL from a dialogue corpus has been proposed (Chen

et al., 2015). The resulting kernel was more representative on the data distribution

and achieved better performance; however, the SL corpus did not help initialise a

better policy. The better initialisation of GP-SARSA has been studied in the context

of domain adaptation by specifying a GP prior or re-using an existing model which

is then pre-trained for the new domain (Gašić et al., 2013a).

A number of authors have proposed training a standard neural-network policy

in two stages (Das et al., 2017; Fatemi et al., 2016; Su et al., 2016a; Williams et al.,

2017; Zhao and Eskenazi, 2016). Asadi and Williams (2016) also explored off-policy

RL methods for dialogue policy learning. All these studies were conducted in

simulation, using error-free text-based input. A similar approach was also used in

a conversational model (Li et al., 2016). In contrast, our work introduces two new

sample-efficient actor-critic methods, combines both two-stage policy learning and

off-policy RL, and tests at differing noise levels.

7.2 Neural Dialogue Management

The proposed framework addresses the dialogue management component, espe-

cially the dialogue policy, in a modular SDS. The input to the model is the belief

state b that encodes a distribution over the possible user intents along with the

dialogue history. The model’s role is to select the system action a at every turn that

will lead to a successful dialogue outcome. The system action is mapped into a

system reply at the semantic level, and this is subsequently passed to the natural

language generator for output to the user.

The semantic reply consists of three parts: the intent of the response, (e.g.

inform), which slots to talk about (e.g. area), and a value for each slot (e.g. east). To

ensure tractability, the policy selects a from a restricted action set which identifies

the intent and sometimes a slot, and any remaining information required to complete

the reply is extracted using heuristics from the tracked belief state.
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Fig. 7.1 A2C, TRACER, and eNACER architectures using feed-forward neural
networks.

7.2.1 Training with Reinforcement Learning

Dialogue policy optimisation can be seen as the task of learning to select the se-

quence of responses (actions) at each turn which maximises the long-term objective

defined by the reward function. Described in Section 3.1.5, this can be solved

by applying either value-based or policy-based methods. The main difference

between the two categories is that policy-based methods have stronger convergence

characteristics than value-based methods. The latter often diverge when using

function approximation since they optimise in value space and a slight change in

value estimate can lead to a large change in policy space (Sutton et al., 2000).

Policy-based methods suffer from low sample-efficiency, high variance and often

converge to local optima since they typically learn via Monte Carlo estimation

(Schulman et al., 2016; Williams, 1992). However, they are preferred due to their

superior convergence properties. Hence in this chapter, we focus on policy-based

methods but also include a value-based method as a baseline.
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Advantage Actor-Critic (A2C)

In a policy-based method, the training objective is to find a parametrised pol-

icy πθ(a|b) that maximises the expected reward J(θ) over all possible dialogue

trajectories given a starting state.

Following the Policy Gradient Theorem (Sutton et al., 2000), the gradient of the

parameters given the objective function has the form:

∇θ J(θ) = E [∇θ logπθ(a|b)Qπθ(b, a)] . (7.1)

Since this form of gradient has a potentially high variance, a baseline function

is typically introduced to reduce the variance while not changing the estimated

gradient (Sutton and Barto, 1999; Williams, 1992). A natural candidate for this

baseline is the value function V(b). Equation 7.1 then becomes the following:

∇θ J(θ) = E [∇θ logπθ(a|b)Aw(b, a)] , (7.2)

where Aw(b, a) = Q(b, a)−V(b) is the advantage function. This can be viewed as

a special case of the actor-critic, where πθ is the actor and Aw(b, a) is the critic,

which is defined by two parameter sets θ and w. To reduce the number of required

parameters, TD errors δw = rt + γVw(bt+1)−Vw(bt) can be used to approximate

the advantage function (Schulman et al., 2016). The left part in Figure 7.1 shows

the architecture and parameters of the resulting A2C policy.

The TRACER Algorithm

To boost the performance of A2C policy learning, two methods are introduced:

I. Experience replay with off-policy learning for speed-up

On-policy RL methods update the model with the samples collected via the

current policy. Sample-efficiency can be improved by utilising ER (Lin, 1992) where

mini-batches of dialogue experiences are randomly sampled from a “replay pool”
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P , which is a buffer with a pre-specified size maintaining the previous dialogue

experiences, to train the model. This increases learning efficiency by re-using

past samples in multiple updates while ensuring stability by reducing the data

correlation. Since these past experiences were collected from different policies

compared to the current policy, the use of ER leads to off-policy updates.

When training models with RL, ϵ-greedy action selection is often used to trade-

off between exploration and exploitation, whereby a random action is chosen with

probability ϵ otherwise the top-ranking action is selected. A policy used to generate

training dialogues (episodes) is referred to as a behaviour policy µ, in contrast to the

policy to be optimised which is called the target policy π.

The basic A2C training algorithm described in Section 7.2.1 is on-policy since it is

assumed that actions are drawn from the same policy as the target to be optimised

(µ = π). In off-policy learning, since the current policy π is updated with the samples

generated from old behaviour policies µ, an importance sampling (IS) ratio is used

to rescale each sampled reward to correct for the sampling bias at each time-step t

(Meuleau et al., 2000):

ρt = π(at|bt)/µ(at|bt). (7.3)

For A2C, the off-policy gradient for the parametrised value function Vw thus

has the following form:

∆woff =
T−1

∑
t=0

(
R̄t − V̂w(bt)

)
∇wV̂w(bt)

t
Π

i=0
ρi, (7.4)

where R̄t is the off-policy Monte-Carlo return (Precup et al., 2001):

R̄t = rt + γrt+1
1
Π

i=1
ρt+i + · · ·+ γT−t−1rT−1

T−1
Π

i=1
ρt+i. (7.5)



7.2 Neural Dialogue Management 99

Likewise, the updated gradient for policy πθ is:

∆θoff =
T−1

∑
t=0

ρt∇θ logπθ(at|bt)δ̂w, (7.6)

where δ̂w = rt + γV̂w(b+t+1)− V̂w(bt) is the TD error using the estimated value of

V̂w.

Also, as the gradient correlates strongly with the sampled reward, reward rt

and total return R are normalised to lie in [-1,1] to stabilise training.

II. Trust region constraint for stabilisation

To ensure stability in RL, each per-step policy change is often limited by setting

a small learning rate. However, setting the rate low enough to avoid occasional

large destabilising updates is not conducive to fast learning.

Here, we adopt a modified Trust Region Policy Optimisation method introduced

by Wang et al. (2017). In addition to maximising the cumulative reward J(θ), the

optimisation is also subject to a Kullback-Leibler (KL) divergence limit between

the updated policy θ and an average policy θa to ensure safety. This average policy

represents a running average of past policies and constrains the updated policy to

not deviate far from the average θa← αθa + (1− α)θ with a weight α.

Thus, given the off-policy policy gradient ∆θoff in Equation 7.6, the modified

policy gradient with trust region g is calculated as follows:

minimise
g

1
2
∥∆θoff − g∥2

2,

subject to ∇θDKL [πθa(bt)∥πθ(bt)]
T g ≤ ξ,

(7.7)

where π is the policy parametrised by θ or θa, and ξ controls the magnitude of

the KL constraint. Since the constraint is linear, a closed form solution to this

quadratic programming problem can be derived using the KKT conditions. Setting
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k =∇θDKL [πθa(bt)∥πθ(bt)], we obtain the following:

g∗tr = ∆θoff −max

{
kT∆θoff − ξ

∥k∥2
2

,0

}
k. (7.8)

When this constraint is satisfied, there is no change to the gradient with respect

to θ. Otherwise, the update is scaled down along the direction of k and the policy

change rate is lowered. This direction is also shown to be closely related to the

natural gradient (Amari, 1998; Schulman et al., 2015), which is presented in the next

section.

The above enhancements speed up and stabilise A2C. We call it the trust region

actor-critic with experience replay (TRACER) algorithm.

The eNACER Algorithm

Vanilla gradient descent algorithms are not guaranteed to update the model parame-

ters in the steepest direction due to re-parametrisation (Amari, 1998; Martens, 2014).

A widely used solution to this problem is to use a compatible function approximation

for the advantage function in Equation 7.2: ∇w Aw(b, a) =∇θ logπθ(a|b), where the

update of w is then in the same update direction as θ (Sutton et al., 2000). Equation

7.2 can then be rewritten as follows:

∇θ J(θ) = E
[
∇θ logπθ(a|b)∇θ logπθ(a|b)Tw

]
= F(θ) · w,

(7.9)

where F(θ) is the Fisher information matrix. This implies ∆θNG = w = F(θ)−1∇θ J(θ)

and it is called the natural gradient. The Fisher Matrix can be viewed as a correction

term which makes the natural gradient independent of the parametrisation of

the policy and corresponds to steepest ascent towards the objective (Martens,

2014). Empirically, the natural gradient has been found to significantly speed up

convergence.
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Based on these ideas, the natural actor-critic (NAC) algorithm was developed

by Peters and Schaal (2006). In its episodic version (eNAC), the Fisher matrix

does not need to be explicitly computed. Instead, the gradient is estimated by a

least squares method given the n-th episode consisting of a set of transition tuples

{(bn
t , an

t ,rn
t )}

Tn−1
t=0 :

Rn =

[
Tn−1

∑
t=0
∇θ logπθ(at|bt;θ)T

]
· ∆θNG + C, (7.10)

which can be solved analytically. C is a constant which is an estimate of the baseline

V(b).

As in TRACER, eNAC can be enhanced by using ER and off-policy learning,

thus called eNACER, whereby Rn in Equation 7.10 is replaced by the off-policy

Monte-Carlo return R̄n
0 at time-step t = 0, as in Equation 7.5. For very large models,

the inversion of the Fisher matrix can become prohibitively expensive to compute.

Instead, a truncated variant can be used to calculate the natural gradient (Schulman

et al., 2015).

eNACER is structured as a feed-forward network with the output π as in

the right of Figure 7.1, updated with natural gradient ∆θNG. Note that by using

the compatible function approximation, the value function does not need to be

explicitly calculated. This makes eNACER in practice a policy-gradient method.

7.2.2 Learning from Demonstration Data

From the user’s perspective, performing RL from scratch will invariably result

in unacceptable performance in the early learning stages. This problem can be

mitigated by using an off-line corpus of demonstration data to bootstrap a policy.

This data may come from a WoZ collection or from interactions between users

and an existing policy. It can be used in three ways: (A): Pre-train the model, (B):

Initialise a supervised replay buffer Psup, and (C): a combination of the two.
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(A) For model pre-training, the objective is to ‘mimic’ the response behaviour

from the corpus. This phase is essentially standard SL. The input to the model is

the dialogue belief state b, and the training objective for each sample is to minimise

a joint cross-entropy loss L(θ) = −∑k yk log(pk) between action labels y and model

predictions p, where the policy is parametrised by a set θ.

A policy trained by SL on a fixed dataset may not generalise well. In spoken

dialogues, the noise levels may vary across conditions and thus significantly affect

performance. Moreover, a policy trained using SL does not perform any long-term

planning on the conversation. Nonetheless, supervised pre-training offers a good

model starting point which can then be fine-tuned using RL.

(B) For supervised replay initialisation, the demonstration data is stored in a

replay pool Psup which is kept separate from the ER pool used for RL and is never

over-written. At each RL update iteration, a small portion of the demonstration

data P ′sup is sampled, and the supervised cross-entropy loss L(θ) computed on

this data is added to the RL objective J(θ). Also, an L2 regularisation loss ∥ · ∥2
2

is applied to θ to help prevent it from over-fitting on the sampled demonstration

dataset. The total loss to be minimised is then the following:

Lall(θ) = −J(θ) + λ1L(θ;P ′sup) + λ2∥θ∥2
2, (7.11)

where λ’s are weights. In this way, the RL policy is guided by the sampled

demonstration data while learning to optimise the total return.

(C) The learned parameters of the pre-trained model in method A might dis-

tribute differently from the optimal RL policy, and this may cause some performance

drop in early stages while learning an RL policy from this model. This can be alle-

viated by using the composite loss proposed in method B. A comparison between

the three options is included in the experimental evaluation.
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7.3 Experiments

The experiments described in this chapter utilised the software tool-kit PyDial

(Ultes et al., 2017), which provides a platform for modular SDS. Similar to previous

chapters the target application is a live telephone-based SDS providing restaurant

information for the Cambridge (United Kingdom) area. The task is to learn a

policy which manages the dialogue flow and delivers requested information to the

user. The domain consists of approximately 100 venues, each with six slots out of

which three can be used by the system to constrain the search (food-type, area and

price-range) and three are system-informable properties (phone-number, address

and postcode) available once a database entity has been found. The former three

slots are also referred to as requestable slots.

The input for all models was the full dialogue belief state b of size 268 which

includes the last system action and distributions over the user intention and the

three requestable slots. The output includes 14 restricted dialogue actions deter-

mining the system intent at the semantic level. Table 7.1 shows the entire list of

restricted system actions.

Table 7.1 The list of restricted system actions.

System Action Description
request_area system asks user to provide the value of area
request_pricerange system asks user to provide the value of price range
request_food system asks user to provide the value of food type
confirm_area system asks user to confirm the value of area
confirm_pricerange system asks user to confirm the value of price range
confirm_food system asks user to confirm the value of food
select_area system asks user to choose from two values of area
select_pricerange system asks user to choose from two values of price range
select_food system asks user to choose from two values of food
inform system informs the slot-values with probability > threshold
inform_byname system informs the name of an entity
inform_alternatives system informs an alternative entity
inform_requested system informs the value of the user-requested slots
bye system says good bye
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Combining the dialogue belief states and heuristic rules, the selected action is

then mapped into a spoken response using a natural language generator.

7.3.1 Model Comparison

Two value-based methods are shown for comparison with the policy-based models

described. For both, the policy is implicitly determined by the action-value (Q)

function which estimates the expected total return when choosing action a given

belief state b at time-step t. For an optimal policy π∗, the Q-function satisfies the

Bellman equation (Bellman, 1954):

Q∗(bt, at) = Eπ∗{rt + γmax
a′

Q∗(bt+1, a′)|bt, at}. (7.12)

Deep Q-Network (DQN)

The Deep Q-Network is a variant of the Q-learning algorithm whereby a neu-

ral network is used to approximate the Q-function. This suggests a sequential

approximation in Equation 7.12 by minimising the loss:

L(wt) = E
[
(yt −Q(bt, at;wt))

2
]

, (7.13)

where yt = rt + γmaxa′ Q(bt+1, a′;w−t ) is the target to update the parameters w.

Note that yt is evaluated by a target network w− which is updated less frequently

than the network w to stabilise learning, and the expectation is over the tuples

(bt, at,rt+1,bt+1) sampled from the ER pool described in Section 7.2.1.

DQN often suffers from over-estimation of Q-values as the max operator is used

to select an action as well as to evaluate it. Double DQN (DDQN) (Van Hasselt

et al., 2016) is thus used to de-couple the action selection and Q-value estimation to

achieve better performance.
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GP-SARSA

GP-SARSA is a state-of-the-art value-based RL algorithm for dialogue modelling

and has been shown in the previous chapters to be effective. It is appealing since

it can learn from a small number of observations by exploiting the correlations

defined by a kernel function and provides an uncertainty measure of its estimates.

In this work, GP-SARSA with uncertainty estimate is used as the benchmark.

7.3.2 Reinforcement Learning from Scratch

The proposed models were first evaluated under 0% semantic error rate with

an agenda-based simulator which generates user interactions at the semantic-

level (Schatzmann et al., 2006). In this case, the user intent is perfectly captured in

the dialogue belief state without noise.

The total return of each dialogue was set to 1(D)− 0.05× T, where T is the

dialogue length and 1(D) is the success indicator for dialogue D. The maximum

dialogue length was set to 20 turns, and γ was 0.99. All deep RL models (A2C,

TRACER, eNACER and DQN) contained two hidden layers of size 130 and 50. The

Adam optimiser was used (Kingma and Ba, 2014) with an initial learning rate of

0.001. During training, an ϵ-greedy policy was used, which was initially set to 0.3

and annealed to 0.0 over 3500 training dialogues. For GP, a linear kernel was used.

The ER pool P size was 1000, and the mini-batch size was 64. Once an initial

192 samples had been collected, the model was updated after every 2 dialogues.

Note that for DQN, each sample was a state transition (bt, at,rt,bt+1), whereas in

A2C, TRACER and eNACER, each sample comprised the whole dialogue with all

its state transitions. For eNACER, the natural gradient was computed to update

the model weights of size ∼ 42000. For TRACER, α was set to 0.02, and ξ was 0.01.

Since the IS ratio has a high variance and can occasionally be extremely large, it

was clipped between [0.8,1.0] to maintain stable training.
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Fig. 7.2 The success rate learning curves of on-policy A2C, A2C with ER, TRACER,
DQN with ER, GP, and eNACER in user simulation under noise-free condition.

Figure 7.2 shows the success rate learning curves of on-policy A2C, A2C with

ER, TRACER, DQN with ER, GP and eNACER. All were tested with 600 dialogues

after every 200 training dialogues. As reported in previous studies, the benchmark

GP model learns quickly and is relatively stable. eNACER provides comparable

performance. DQN also showed high sample-efficiency but with high instability

at some points. This is because an iterative improvement in value space does

not guarantee an improvement in policy space. Although comparably slower to

learn, the difference between on-policy A2C and A2C with ER clearly demonstrates

the sample-efficiency of re-using past samples in mini-batches. The enhancements

incorporated into the TRACER algorithm do make this form of learning competitive

although it still lags behind eNACER and GP-SARSA.

7.3.3 Learning from Demonstration Data

Regardless of the choice of model and learning algorithm, training a policy from

scratch on-line will always result in a poor user experience until sufficient interac-

tions have been experienced to allow acceptable behaviours to be learned.
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(a) Learning for A2C ER.
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(b) Learning for TRACER and eNACER.

Fig. 7.3 Utilising demonstration data for improving RL learning speed.

As discussed in Section 7.2.2, an off-line corpus of demonstration data can

potentially mitigate this problem. To test this, a corpus of 720 real user spoken

dialogues in the Cambridge restaurant domain was utilised. The corpus was split

in a 4:1:1 ratio for training, validation and testing. It contains interactions between

real users recruited via the AMT service and a well-behaved SDS as described in

Su et al. (2016b).

For A2C with ER and TRACER, the three ways of exploiting demonstration data

in Section 7.2.2 were explored. The exploration parameter ϵ was also set to 0.3 and

annealed to 0.0 over 2000 training dialogues. Since TRACER has similar patterns to

A2C with ER, we first explored the impact of demonstration data on the A2C with

ER results since it provides more headroom for identifying performance gains.

Figure 7.3a shows the different combinations of demonstration data using A2C

with ER in noise-free conditions. The supervised pre-trained model (SL model)

provides reasonable starting performance. The A2C ER model with supervised

pre-training (A2C ER+SL_model) improves on this after only 400 dialogues while

suffering initially. We hypothesise that the optimised SL pre-trained parameters

distributed very differently to the optimal eNACER ER parameters. Also, the A2C

ER model with SL replay (A2C ER+SL_replay) shows clearly how the use of a

supervised replay buffer can accelerate learning from scratch. Moreover, when SL
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pre-training is combined with SL replay (A2C ER+SL_model+replay), it achieved

the best result. In addition, λ1 and λ2 in Equation 7.11 were 10 and 0.01, respectively.

In each policy update, 64 demonstration data were randomly sampled from the

supervised replay pool Psup, which is the same number of RL samples selected from

ER for A2C learning. Similar patterns emerge when utilising demonstration data to

improve early learning in the TRACER and eNACER algorithms as shown in Figure

7.3b. However, in this case, eNACER is less able to exploit demonstration data since

the training method is different from standard actor-critics. Hence, the supervised

loss L cannot be directly incorporated into the RL objective J, as in Equation 7.11.

One could optimise the model using L separately after every RL update. However,

in our experiments, this did not yield improvement. Hence, only eNACER learning

from a pre-trained SL model is reported here. Compared to eNACER learning

from scratch, eNACER from SL model started with good performance but learned

more slowly. Again, this may be because the optimised SL pre-trained parameters

distributed very differently from the optimal eNACER parameters and led to sub-

optimality. Overall, these results suggest that the proposed SL+RL framework to

exploit demonstration data is effective in mitigating the cold start problem and

TRACER provides the best solution regarding avoiding poor initial performance,

rapid learning and competitive fully trained performance.

In addition to the noise-free performance, we also investigated the impact of

noise on the TRACER algorithm. Figure 7.4 shows the results after training on

2000 dialogues via interaction with the user simulator under different semantic

error rates. The random policy (white bars) uniformly sampled an action from the

action set of size 14. This can be regarded as the average initial performance of any

learning system. The figure shows that SL generates a robust model which can be

further fine-tuned using RL over a wide range of error rates. It should be noted,

however, that the drop-off in performance at high noise levels is more rapid than

might be expected, comparing to the GP-SARSA.
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Fig. 7.4 The success rate of TRACER for a random policy, policy trained with
corpus data (NN:SL), further improved via RL (NN:SL+RL), and GP RL (GP:RL),
respectively, in user simulation under various semantic error rates.

To examine the learning details, Figure 7.5 illustrates the success rate learning

curve of TRACER under SERs 15% and 45%. The models learned from the SL-

trained models, which are the cases of no RL training dialogues in the figure. We

can clearly see that the proposed model learned fast up to 200 training dialogues

in both SERs but struggled to improve much afterwards It is suspected that deep

architectures are prone to overfitting and in consequence do not handle well

uncertainty in user behaviour. Overall, these outcomes validate the benefit of the

proposed two-phased approach where the system can be effectively pre-trained

using corpus data and then be further refined via user interactions.

7.4 Summary

This chapter has presented two compatible approaches to addressing the problem of

slow learning and poor initial performance in deep RL algorithms. First, TRACER

and eNACER were presented, and these have been shown to be more sample-

efficient than other deep RL models and broadly competitive with GP-SARSA.
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Fig. 7.5 The success rate learning curve of TRACER trained with SL+RL data in
user simulation under semantic error rates 15% and 45%.

Second, it has been shown that demonstration data can be utilised to mitigate poor

performance in the early stages of learning. To this end, two methods for using

off-line corpus data were presented: simple pre-training using SL, and using the

corpus data in a replay buffer. These were particularly effective when used with

TRACER which provided the best overall performance.

Experimental results were also presented for mismatched environments, and

again, TRACER demonstrated the ability to avoid poor initial performance when

trained only on the demonstration corpus, yet it still improves substantially with

subsequent RL. However, performance still falls off rather rapidly in noise compared

to GP-SARSA, as the uncertainty estimates are not handled well by neural networks

architectures.

Finally, it should be emphasised that while this chapter has focussed on the

early stages of learning, a domain where GP-SARSA provides a benchmark that is

hard to beat, the potential of deep RL is its scalability to exploit on-line learning
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with very large user populations since the model size is fixed and is independent

to the collected samples.





CHAPTER 8

Conclusions

8.1 Conclusions

Reinforcement learning approaches provide a general purpose framework for

decision making, which is beneficial for automating dialogue policy design without

many hand-crafted rules. This dissertation addresses two main challenges of RL-

based dialogues: the practical design of the learning objective and the training

speed of the system.

An appropriate RL objective in dialogue is not readily apparent since it is

determined by the human user’s own internal goal, which is hard to measure. To

address this issue, this thesis first describes an RNN-based reward estimator, which

is trained from off-line data, for estimating task success during subsequent on-line

dialogue policy learning. Furthermore, a joint on-line dialogue policy and reward

learning framework is also proposed, where the reward is modelled as a GP with

active learning to handle noise in user ratings and minimise user intrusion. Both

off-line and on-line methods have been shown to achieve practical policy learning

in dialogue applications, while the latter provides a more general system able to

learn jointly directly from users.

In dialogue systems, the on-line RL scenario has two common issues: slow

learning speed and poor performance in the early training stages. These problems

have a negative impact on user experience. Reward shaping, a light-weighted
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and effective concept, is exploited to enrich the original sparse reward signal to

enhance the policy learning speed. Moreover, because of their potential to scale to

large real-world tasks, deep neural network policy models are also investigated for

learning a dialogue agent. Two sample-efficient algorithms, trust region actor-critic

with experience replay (TRACER) and episodic natural actor-critic with experience

replay (eNACER) are introduced to address the slow learning of gradient-based

methods. Furthermore, a corpus of demonstration data is utilised to pre-train

the models prior to on-line RL to handle the cold start problem. Combining the

above methods, a practical approach is suggested to effectively learn deep RL-based

dialogue policies in a task-oriented information seeking domain.

Overall, this thesis contributes to advance the SDS that can continuously learn

and adjust its policy on-line with real users.

8.2 Limitation and Future Work

The reward estimators proposed in the first half of the thesis are closely related

to dialogue evaluation (Dodge et al., 2015; Liu et al., 2016; Lowe et al., 2017).

Although in task-oriented slot-filling scenarios, success information is the prominent

feature, this is only one aspect of user satisfaction. It is thus worth investing other

dimensions that define the dialogue quality.

Another natural extension to the work here is on deep RL-based dialogue policy.

Unlike Bayesian methods such as GPs which have uncertainty measurement, the

exploration strategy used in the neural network-based models is always ϵ-greedy,

where all actions are served equally; thus, the model learns slowly. One possible

way is to incorporate uncertainty measurement into the neural networks (Blundell

et al., 2015; Gal and Ghahramani, 2015; Osband et al., 2016). Tegho et al. (2017) has

shown positive results for enhancing the sample-efficiency of DQN models.

Current dialogue policies mainly operate on dialogue acts (Stolcke et al., 2000),

of which there are typically around 10–20. However, these dialogue acts are often
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hand-crafted, and thus scalability remains a big issue because the choice of dialogue

act highly constrains the potential output response. A recent attempt has been

made to learn latent dialogue acts (Wen et al., 2017b) and this may help generate a

more diverse system response.

Despite the promising results of the methods explored in this thesis, there are

several issues remaining in the current modular SDSs. While the pipeline architec-

ture enables us to diagnose and improve individual components, the improvement

of a single module may not directly boost the performance of the downstream units.

Recent work on end-to-end text-based task-oriented dialogue systems (Bordes et al.,

2017; Eric and Manning, 2017; Wen et al., 2017a; Yang et al., 2017), on the other

hand, aims to jointly learn multiple components together and do not factorise

the model into intermediate states; thus, no labels are needed. These methods

potentially speed up the development process of the entire dialogue systems and

are worth further investigation.

Apart from pure natural language-based dialogues, researchers in the computer

vision community have tried to combine images with text-based dialogues (Das

et al., 2016, 2017). Essentially, the visual inputs provide additional rich information

about the environment on top of the dialogue exchange and thus help achieve good

performance. More joint work between language and vision are expected to appear

in the near future.

Although learning from real users is desirable, it is often costly. On the other

hand, user simulation (Schatzmann et al., 2006) offers a useful testbed for evaluating

the newly proposed methods, where hundreds of thousands of interactions can be

done with little cost. In addition, in the RL setting, the user is the environment the

system is interacting with. Hence, learning a user model is equivalent to learning

the environmental transition function (transition probability). Combining this with

the subsequent dialogue policy learning, the entire framework can be considered

as a model-based RL task. As opposed to model-free methods which require
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many samples to approximate the policy, model-based approaches may be far more

sample-efficient.



Acronyms

A2C Advantage Actor-Critic. xviii, 94–96, 98, 103–105

AMT Amazon mechanical turk. 57, 67, 88, 104

ASR automatic speech recognition. 10, 12, 14, 15, 19, 21, 23

BUDS Bayesian update of dialogue state. 13, 51

CFG context-free grammars. 11, 12

CRF conditional random fields. 12, 13

DBN dynamic Bayesian network. 12, 13, 51

DiaAct dialogue act. 11

DQN Deep Q-Network. xviii, 102–104

DST dialogue state tracking. 12–15, 19, 23, 24, 37

eNACER episodic natural actor-critic with experience replay. xviii, 92, 94, 99,

103–107, 110

ER experience replay. 92, 95, 102

ES evolutionary strategies. 28, 29

GMM Gaussian mixture model. 10
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107, 109, 110

GRU gated recurrent unit. xvii, 48, 82–89

HMM hidden Markov model. 10, 16, 51

IRL inverse reinforcement learning. 39, 40

LM language model. 10, 15

LSTM long short-term memory. xvi, xvii, 48, 62, 63, 82–86, 89

MC Monte-Carlo. 35

MDP Markov decision process. 15, 20, 21, 25, 41

MFCCs Mel frequency cepstral coefficients. 10

NLG natural language generation. 15, 23, 40, 46, 52

NLP natural language processing. 46, 83

POMDP partially observable Markov decision process. 15, 20, 21, 23–28, 33, 34, 38

RL reinforcement learning. xv, xviii, 4–7, 14, 16, 17, 19, 20, 24, 25, 28, 32–38, 40, 42,
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RNN recurrent neural network. xv, xvii, xix, 6, 10, 46, 48, 49, 55, 58, 61–63, 68, 73,
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SDS spoken dialogue system. 1–3, 5, 9, 12, 19, 21–24, 32–34, 37–40, 42, 45, 51, 52,
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SGD stochastic gradient descent. 54, 64, 85



Acronyms 119

SLU spoken language understanding. 11–14, 19, 21–23, 37, 46

SS speech synthesis. 16

SVM support vector machine. 12

TD temporal difference. 35, 95

TRACER trust region actor-critic with experience replay. xviii, 92, 94, 98, 99,

103–107, 110

TTS text-to-speech. 23
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Gašić, M., Breslin, C., Henderson, M., Kim, D., Szummer, M., Thomson, B., Tsiak-
oulis, P., and Young, S. J. (2013b). On-line policy optimisation of bayesian spoken
dialogue systems via human interaction. In Proc of ICASSP.
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APPENDIX A

Dialogue Act Definitions

Dialogue acts offer a representation in semantic level for the user’s or the system’s

utterance. The CUED dialogue act taxonomy (Young, 2009) is adopted in the entire

thesis. A dialogue act is represented as the combination of a dialogue act type

followed by a sequence of slot-value pairs (optional):

DiaActType(s1=v1, s2=v2).

The DiaActType is the type of the dialogue act, such as inform, request, or

confirm. The slot-value pairs s=v are the contents of the utterance, where the s or

v can be null. Examples are area=north, phone= and =dontcare. More details are

described in Table A.1, where the CUED dialogue act definitions are presented.
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Table A.1 A list of CUED dialogue acts.

Dialogue Act System User Description
hello() ✓ ✓ start the dialogue
hello(a=x,b=y, . . . ) × ✓ start the dialogue with information a=x, b=y, ...
silence() × ✓ the user is silent
thankyou() × ✓ implicit positive answer from the user
ack() × ✓ back-channel e.g. uh huh, ok, etc
bye() ✓ ✓ end the dialogue
hangup() × ✓ user hangs up
inform(a=x, b=y, . . . ) ✓ ✓ give information a=x, b=y, ...
inform(name=none) ✓ × inform that no matched entity is found
inform(a!=x, . . . ) × ✓ inform that a is not equal to x
inform(a=dontcare, . . . ) × ✓ the user does not care about the value of a
request(a) ✓ ✓ request value of a
request(a, b=x, . . . ) ✓ ✓ request value of a given b=x,...
reqalts() × ✓ request an alternative solution
reqalts(a=x, . . . ) × ✓ request an alternative solution with a=x,...
reqalts(a=dontcare, . . . ) × ✓ request an alternative solution relaxing constraint a
reqmore() ✓ × inquire if user wants anything more
reqmore(a=dontcare) ✓ × inquire if user would like to relax a
reqmore() × ✓ request more information about the current solution
reqmore(a=x,b=y, . . . ) × ✓ request more information given a=x, b=y, ...
confirm(a=x,b=y, . . . ) ✓ ✓ confirm a=x, b=y, ...
confirm(a!=x, . . . ) ✓ ✓ confirm a!=x, ...
confirm(name=none) × ✓ confirm that no suitable entity is
confirm(a=dontcare,...) ✓ ✓ confirm that a is a “don’t care” value
confreq(a=x,...,c=z,d) ✓ × confirm a=x, ... , c=z and request value of d
select(a=x, a=y) ✓ × select either a=x or a=y
affirm() ✓ ✓ simple yes response
affirm(a=x,b=y, . . . ) ✓ ✓ affirm and give further info a=x, b=y, ...
negate() ✓ ✓ simple no response
negate(a=x) ✓ ✓ negate and provide the corrected value for a
negate(a=x,b=y, . . . ) ✓ ✓ negate(a=x) and give further info b=y, ...
deny(a=x,b=y) × ✓ inform that a!=x and give further info b=y, ...
repeat() ✓ ✓ request to repeat last act
help() × ✓ request for help
restart() × ✓ request to restart
null() ✓ ✓ null act, does nothing
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