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TaggedPAbstract

Viewing dialogue management as a reinforcement learning task enables a system to learn to act optimally by maximising a

reward function. This reward function is designed to induce the system behaviour required for the target application and for goal-

oriented applications, this usually means fulfilling the user’s goal as efficiently as possible. However, in real-world spoken dia-

logue system applications, the reward is hard to measure because the user’s goal is frequently known only to the user. Of course,

the system can ask the user if the goal has been satisfied but this can be intrusive. Furthermore, in practice, the accuracy of the

user’s response has been found to be highly variable. This paper presents two approaches to tackling this problem. Firstly, a recur-

rent neural network is utilised as a task success predictor which is pre-trained from off-line data to estimate task success during

subsequent on-line dialogue policy learning. Secondly, an on-line learning framework is described whereby a dialogue policy is

jointly trained alongside a reward function modelled as a Gaussian process with active learning. This Gaussian process operates

on a fixed dimension embedding which encodes each varying length dialogue. This dialogue embedding is generated in both a

supervised and unsupervised fashion using different variants of a recurrent neural network. The experimental results demonstrate

the effectiveness of both off-line and on-line methods. These methods enable practical on-line training of dialogue policies in

real-world applications.

� 2018 Published by Elsevier Ltd.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/).
TaggedPKeywords: Dialogue systems; Reinforcement learning; Deep learning; Reward estimation; Gaussian process; Active learning

1. Introduction

TaggedPSpoken Dialogue Systems (SDS) allow human�computer interaction using natural speech. They can be broadly

divided into two categories: chat-based systems which converse with users with the aim of providing contextually

relevant responses in broad domains (Vinyals and Le, 2015; Serban et al., 2015), and task-oriented systems designed

to assist users to achieve specific goals (e.g. find hotels, movies or bus schedules) (Young et al., 2013). The latter are

typically designed on top of a structured ontology (or a database schema), which defines the domain that the system

can talk about. The development of such systems traditionally requires a substantial amount of hand-crafted rules

combined with various statistical components. These include a spoken language understanding module (Henderson
I This paper has been recommended for acceptance by Roger K. Moore.
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TaggedPet al., 2012; Chen et al., 2016), a dialogue belief state tracker (Henderson et al., 2014) to predict user intents and

track the dialogue history, a dialogue policy (Ga�si�c and Young, 2014) to determine the dialogue flow, and a natural

language generator (Wen et al., 2015) to convert abstract system responses into natural language. Teaching such a

system how to respond appropriately in all situations is non-trivial. Traditionally, the dialogue management compo-

nent has been designed manually using flow charts to directly specify system behaviour. More recently, it has been

formulated as a planning problem and solved using reinforcement learning (RL) to enable automatic optimisation

during interaction with users (Ga�si�c and Young, 2014; Levin and Pieraccini, 1997; Roy et al., 2000; Williams and

Young, 2007; Jur�c�ı�cek et al., 2011; Li et al., 2016; Su et al., 2016a; Dhingra et al., 2016; Su et al., 2017). In this

framework, the system learns by a trial and error process governed by a potentially delayed learning objective, a

reward function.

TaggedPA typical approach to defining the reward function in a task-oriented dialogue system is to apply a small per-turn

penalty to encourage short dialogues and to give a large positive reward at the end of each successful interaction.

Fig. 1 is an example of a dialogue task which is typically set when bootstrapping or evaluating a system using paid

subjects. When paid subjects are primed with a specific task to complete, dialogue success can be determined from

both subjective user ratings (Subj), and from an objective measure (Obj) based on whether or not the pre-specified

task was completed (Walker et al., 1997; Ga�si�c et al., 2013). However, when operating with real users, prior knowl-

edge of the user’s goal is not normally available and hence it is not possible to compute an objective reward.

TaggedPFurthermore, objective ratings must necessarily be quite strict to ensure that paid subjects properly exercise the

system. As a consequence, tasks often fail because the paid subject forgot to ask for a required piece of information.

For example, in Fig. 1, the paid subject forgot to ask for the phone number. This results in a mismatch between the

Obj and Subj ratings.

TaggedPUnfortunately, relying on subjective ratings alone is also problematic since paid subjects frequently give inaccu-

rate responses partly because they forget the complete task as in the example above, and also because they are con-

cerned that their answers will affect their payment. Real users are often unwilling to extend the interaction in order

to give feedback, and even when they do, their feedback can also be unreliable (Ga�si�c et al., 2013), for example due

to sociological effects such as not wishing to be impolite.

TaggedPAll of the above can result in unstable learning (Zhao et al., 2011; Ga�si�c et al., 2011). When bootstrapping a sys-

tem using paid users, an effective albeit inefficient solution is to ignore all dialogues for which the objective success

assessment differs from the subjective success assessment (referred to as the Obj ¼ Subj check below) (Ga�si�c et al.,
2013). However, as well as being inefficient, this solution does not help address the real problem which is how to

train systems on-line with real users when the user’s goal is generally unknown and difficult to infer.

TaggedPTo deal with the above issues, this paper investigates the use of an independent reward estimator which can be

trained to monitor a dialogue and accurately estimate task success independently of the specific goal set, or of what-

ever goal is in the user’s mind. The investigation is in two parts.

TaggedPWe first describe a recurrent neural network (RNN) designed to estimate objective success Obj, which is trained

from off-line simulated dialogue data (Su et al., 2015a; Vandyke et al., 2015). The resulting policy is found to be as
Fig. 1. An example of a task-oriented dialogue with a pre-defined task and the evaluation results.
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TaggedPeffective as the one trained with dialogues using the Obj ¼ Subj check. However, a user simulator will only provide

a rough approximation of real user statistics and developing a user simulator is a costly process (Schatzmann et al.,

2006). In addition, the interactions encountered during subsequent deployment might be distributed very differently

to those generated by the simulator.

TaggedPTo counter this, the second part of the paper describes an on-line active learning method in which users are asked

to provide feedback on whether the dialogue was successful or not (Su et al., 2016b). In this set-up, active learning

is used to limit requests for user feedback to only those cases where the feedback would be useful. The estimator

used is a Gaussian process classification (GPC) model. This has the advantage that as well as being highly data effi-

cient and providing a measure of uncertainty in its estimates, it also incorporates a noise model which can be used to

compensate for cases where the user feedback is inaccurate. Since GPC operates on a fixed-length observation space

and dialogues are of variable-length, an RNN-based embedding function is used to provide fixed-length dialogue

representations.

TaggedPWhen the above components are integrated with a GP-based dialogue management policy, we demonstrate that

both the dialogue policy and the reward estimator can simultaneously learn on-line from scratch, making this frame-

work directly applicable to real-world applications in which systems learn directly in interaction with real users per-

forming real-world tasks.

TaggedPThe rest of the paper is organised as follows. The following section gives an overview of related work and then

Section 3 introduces the components of our spoken dialogue system, the operating domain, and the learning algo-

rithm used for dialogue policy training. The proposed off-line reward estimator is presented in Section 4, where the

turn-level dialogue features and the off-line reward model are described. Following this, the framework of on-line

active reward estimation is introduced in Section 5. This includes the design of the dialogue embedding function and

the active reward model trained from real user feedback. In Section 6, the proposed approaches are evaluated in the

context of an application providing restaurant information in Cambridge, UK. The accuracy of the off-line reward

model on a reward prediction task is given and then the results of dialogue policy learning are presented. To provide

some insight into the effectiveness of the dialogue embedding, an analysis of the dialogue embedding space is also

presented. Finally, the performance of the active reward model when simultaneously trained with the dialogue policy

on-line with real users is presented. Concluding remarks are made in Section 7.
2. Related work

TaggedPDialogue evaluation has been an active research area since late 90s. In the PARADISE framework, a linear func-

tion of task completion and various other dialogue features such as dialogue duration were used to infer user satisfac-

tion (Walker et al., 1997). This measure was later used as a reward function for learning a dialogue policy (Rieser

and Lemon, 2011). However, as noted above, obtaining an accurate estimate of task completion is difficult when the

system is interacting with real users. Also, concerns have been raised regarding the theoretical validity of the PARA-

DISE model (Larsen, 2003).

TaggedPSeveral approaches have been adopted for learning a dialogue reward model given a corpus of annotated dia-

logues. For example, Yang et al. used collaborative filtering to infer user preferences (Yang et al., 2012). The use of

reward shaping has also been investigated to enrich the reward function in order to speed up dialogue policy learning

(El Asri et al., 2014; Su et al., 2015b). It has also been demonstrated that there is a strong correlation between an

expert’s user satisfaction rating and dialogue success (Ultes and Minker, 2015). However, all these methods assume

the availability of accurate dialogue annotations such as expert ratings, which in practice are hard to obtain.

TaggedPOne effective way to mitigate the effects of annotator error in lower quality annotations is to obtain multiple rat-

ings for the same data and several methods have been developed to guide the annotation process using uncertainty

models (Dai et al., 2013; Lin et al., 2014). Active learning is particularly useful for determining when an annotation

is needed (Settles, 2012; Zhang and Chaudhuri, 2015) and it is often implemented using Bayesian optimisation

(Brochu et al., 2010). For example, Daniel et al. (2014) exploited a pool-based active learning method for a robot-

ics application. They queried the user for feedback on the most informative sample collected so far and showed

the effectiveness of this method. Active learning coupled with Gaussian process regression has been previously

used for dialogue policy optimisation and shown to be more sample efficient than alternative methods (Ga�si�c and

Young, 2014).
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TaggedPRather than explicitly defining a reward function, inverse RL (IRL) aims to recover the underlying reward

from demonstrations of good behaviour and then learn a policy which maximises the recovered reward

(Russell, 1998). IRL was first introduced into SDS design by Paek and Pieraccini (2008), where the reward

was inferred from human�human dialogues to mimic the behaviour observed in a corpus. IRL has also

been studied in a Wizard-of-Oz (WoZ) setting (Boularias et al., 2010; Rojas Barahona and Cerisara, 2014),

where typically a human expert served as the dialogue manager to select each system reply based on the

speech understanding output at different noise levels. However, this approach is costly and there is no rea-

son to suppose that a human wizard is acting optimally, especially at high noise levels.

TaggedPSince humans are better at giving relative judgements than absolute scores, another related line of research has

focused on preference-based approaches to RL (Cheng et al., 2011). For example, in one study, users were asked to

provide rankings between pairs of dialogues (Sugiyama et al., 2012). However, this is also costly and does not scale

well in real applications.

3. The core spoken dialogue system

TaggedPThe Cambridge restaurant domain is used for all of the experimental work described in this paper. Users converse

with the system to find restaurants in Cambridge that match their required constraints such as food type, area, etc. The

domain consists of approximately 150 venues and each venue has six attributes (slots) of which three (area, price-

range and food-type) can be used by the system to constrain the search and the remaining three (phone number,

address and postcode) are informable properties that can be queried by the user once a database entity has been found.

TaggedPTwo operating modes are used in the experiments: live user trial mode and user simulation mode. In live user trial

mode, the core components of the SDS comprise a domain independent HMM-based speech recogniser, a confusion

network (CNet) semantic decoder (Henderson et al., 2012), the BUDS belief state tracker that factorises the dialogue

state using a dynamic Bayesian network (Thomson and Young, 2010), a Gaussian process-based dialogue

manager (Ga�si�c and Young, 2014), and a template-based natural language generator (NLG) to map system actions

into natural language responses back to the user.

TaggedPIn user simulation mode, an agenda-based simulated user is used to interact with the system at the abstract dia-

logue act level (Keizer et al., 2010). In this mode, the system consists of only the BUDS belief state tracker and the

dialogue manager. The user simulator includes an error generator, which can be set to generate user inputs with dif-

ferent semantic error rates (SER).

TaggedPThe core of the dialogue manager is a dialogue policy p which maps the belief state b2B; a distribution over all

possible dialogue states at each turn, to a system action a2A; which in live mode is converted into natural language

using the NLG component.

TaggedPAs explained in the introduction, the behaviour of a statistical dialogue system is conditioned by a reward func-

tion r(b, a) which for any given belief state b and action a defines the immediate reward for that turn. Dialogue pol-

icy optimisation seeks to use reinforcement learning to maximise the total reward expected over each complete

dialogue.

TaggedPAn estimator for the expected cumulative reward (also called the return) from any given belief state b and action

a to the end of the dialogue is often defined by a Q-function:

Qðb; aÞ ¼ Ep

XT
t¼tþ1

rtjbt ¼ b; at ¼ a

 !
ð1Þ

where rt is the immediate reward obtained at time t and T is the dialogue length.1Optimising the Q-function is equiv-

alent to optimising the policy p.

TaggedPFor all of the experiments described in this paper, the Q-function is modelled by a Gaussian process (GP):

Qðb; aÞ»GP mðb; aÞ; kððb; aÞ; ðb; aÞÞð Þ ð2Þ
where m(¢,¢) is the prior mean function and the kernel k(¢,¢) is factored into separate kernels over belief and action

spaces kBðb; b0ÞkAða; a0Þ. The policy is optimised using an algorithm called GP-SARSA (Ga�si�c and Young, 2014;
1 The total reward in RL often includes a discount factor to discount the value of future rewards. Dialogues in a task oriented SDS typically

require only 6 or 7 turns, and they rarely extend beyond 20 turns. Hence, the discount factor is normally set to 0.99 or 1.0.
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TaggedPEngel, 2005) in which the Q-function is updated by calculating the posterior given the collected belief-action pairs

(b, a) (dictionary points) and their corresponding rewards.

TaggedPGP-based reinforcement learning (GPRL) is particularly appealing since it can learn from a small number of

observations by exploiting the correlations defined by the kernel function and, as a bonus, it also provides a measure

of the uncertainty in its estimates. This knowledge of the distance between data points in the observation space

greatly speeds up policy learning since the Q-values of the unexplored space can be estimated from the Q-values of

nearby points. However, computation and model complexity become intractable if every data point had to be memo-

rised. So instead, sparse approximation methods such as kernel span (Engel, 2005) are used to bound the size of

stored training points.

TaggedPFurther reductions in data space requirements can be achieved by condensing the action set into a fixed set of sum-

mary actions, which are then heuristically mapped back into the master system action space using a set of hand-

crafted rules. The summary action space consists of a set of slot-dependent and slot-independent summary actions.

Slot-dependent summary actions include requesting the slot value, confirming the most likely slot value and select-

ing between the top two slot values.

TaggedPThe summary action kernel is defined as:

kAða; a0Þ ¼ daða0Þ ð3Þ
where daða0Þ ¼ 1 iff a ¼ a0; 0 otherwise. The belief state consists of the probability distributions over the Bayesian

network hidden nodes that relate to the dialogue history for each slot and the user goal for each slot. The dialogue

history nodes can take a fixed number of values, whereas user goals range over the values defined for that particular

slot in the ontology and can have very high cardinalities. User goal distributions are therefore sorted according to the

probability assigned to each value since the choice of summary action does not depend on the values but rather on

the overall shape of each distribution. The kernel function over both dialogue history and user goal nodes is based

on the expected likelihood kernel (Jebara et al., 2004), which is a simple linear inner product. The kernel function

for belief space is then the sum over all the individual hidden node kernels:

kBðb; b0Þ ¼
X
h

h bh; b0h i ð4Þ

where bh is the probability distribution encoded in the hth hidden node.
4. Off-line reward estimation

TaggedPIn this section, a recurrent network-based reward estimator is described which can be trained to estimate task suc-

cess based on turn-level features extracted directly from each dialogue. Once trained, the reward estimator enables

on-line policy optimisation with real users without access to either Obj or Subj task success ratings. It does however

require training data annotated for task success which in the work described here is generated off-line by a user simu-

lator.

TaggedPRecurrent neural networks (RNNs) are a subclass of neural network models with recurrent connections from one

time-step to the next. Their ability to succinctly capture and retain history information makes them suitable for

modelling sequential data with temporal dependencies. They have been previously used with success in a variety of

natural language processing (NLP) tasks such as language modelling (Karpathy and Fei-Fei, 2015; Mikolov et al.,

2010; 2011) and spoken language understanding (SLU) (Mesnil et al., 2015).

4.1. Training data and dialogue features

TaggedPThe data used to train all of the reward estimation models was collected by training several Gaussian process poli-

cies (Ga�si�c and Young, 2014) at various error rates (see Section 6.2 below) from scratch using an agenda-based sim-

ulated user (Keizer et al., 2010). Each dialogue was labelled as a success or failure using the objective criteria (Obj)

described in the introduction i.e. a dialogue was labelled as successful if all of the users’ goals randomly generated

at the start of the dialogue were completed. The reward function used during policy training gave ¡1 at each turn to

encourage brevity, and +20 at completion if the dialogue was successful, otherwise 0. The return (cumulative

reward) < was, therefore, calculated as:



Fig. 2. Feature vector ft extracted at each turn t.

Fig. 3. An unrolled view of the RNN model. The feature vectors extracted at turns t ¼ 1; . . . ;T are labelled ft. Two types of output are considered:

binary classification and regression.
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TaggedP

< ¼ 20� 1success�N ð5Þ
where N is the number of dialogue turns and 1success is an indicator function for success.

TaggedPFor all models, a feature vector ft was extracted at each turn t consisting of the following concatenated sections: a

one-hot encoding of the user’s top-ranked dialogue act, the real-valued belief state vector formed by concatenating

the distributions over all goal (area, price range, food type), method and history variables (Thomson and Young,

2010), a one-hot encoding of the summary system action, and the current turn number (see Fig. 2).

TaggedPThis form of feature vector was motivated by considering the primary information a human would require to read

a transcription and rate the success of the dialogue. The inclusion of the belief vector, the user dialogue act and the

system’s actions makes this feature vector domain and system dependent.

TaggedPThe aim of the RNN reward predictor is to enable policy learning with real users without prior knowledge of the

users’ goal. To do this, the model should consider the information available at every turn of the dialogue and then

evaluate whether or not the policy provided everything that was asked for. The hope is that by training the RNN

model on data from simulated users, it will generalise and provide accurate assessments of dialogues with real users

whose goals are not known a priori.
4.2. Recurrent neural network structure

TaggedPThe RNN reward predictor takes as input the feature vectors ft described above and updates its hidden layer ht at

each turn t.2 Once the dialogue ends, the hidden layer is then connected to an output layer to make a single reward

prediction for the whole dialogue as depicted in Fig. 3.

TaggedPThe network structure in the final layer is determined by the choice of supervised training targets, of which two

types were considered:

TaggedP(1) Classification model: in this case, the RNN is formulated as a binary classifier which is trained to predict suc-

cess or failure for each dialogue. The targets are {0, 1} and the final layer of the RNN outputs a scalar through a sig-

moid activation function and is trained with a cross-entropy loss. The output from this network is a probability p that

the dialogue is a success, and the hard class label predicted by the model is taken as 1 if p> 0.5, else 0. This hard

label is used to determine whether to give a final reward of +20 during policy learning, as per Eq. (5).
2 Convolutional neural networks were also investigated on the same task as in Su et al. (2015a). However, only results using an RNN are shown

here since it was found to be generally more robust.
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TaggedP(2) Regression model: in this case, the RNN is formulated as a regressor with the actual return value used as the

training target. The model’s final layer has no non-linearity (activation) and the whole model is trained with a mean-

square-error (MSE) loss function. During subsequent policy learning using this predictor, the per-turn penalty is sup-

pressed since it is already taken account of by the RNN reward predictor.
5. On-line active reward learning

TaggedPThe off-line reward predictor described above suffers from the obvious problem that it requires either a user

simulator to be built or a substantial amount of training data to be collected and annotated. Furthermore, which-

ever approach is taken, the training data may be a poor match to the user population used for on-line policy

optimisation.

TaggedPAn alternative is to learn a predictor directly on the real user population in parallel with policy optimisa-

tion, with the label annotation provided by subjective user feedback. However as noted above, subjective user

ratings, especially ones collected via crowd-sourcing, tend to be inaccurate (Ga�si�c et al., 2011), potentially

intrusive and hard to collect since users will often just “hang-up” as soon as they have the information they

need. In this section, a Gaussian process-based reward estimator is described which uses active learning

to limit intrusive requests for feedback and a noise model to mitigate the effects of inaccurate feedback

(Su et al., 2016b).

TaggedPThe proposed system framework is depicted in Fig. 4. It is divided into two main parts: a dialogue embedding

function, and an active reward model to obtain user feedback and predict dialogue success. When each dialogue

ends, a sequence of turn-level features ft as illustrated in Section 4.1 is extracted and fed into an embedding function

& to obtain a fixed-dimension dialogue representation d that serves as the input to the reward model. This reward is

modelled as a Gaussian process which for every input d provides an estimate of task success along with an estimate

of the uncertainty. Based on this uncertainty, the reward model decides whether to query the user for feedback or

not. It then returns a reinforcement signal to update the dialogue policy p, which is trained using the GP-SARSA

algorithm as described in Section 3.

TaggedPNote that the reward model and the dialogue policy are being jointly optimised during the sequence of dialogues.

Initially, the joint learning process is being supervised by the user feedback. Once learning is underway, the user

supervision becomes lighter and ultimately the learning becomes essentially unsupervised.

5.1. Dialogue embeddings

TaggedPThe use of embedding functions for sequence modelling has recently gained attention especially for word repre-

sentations, and it has boosted performance on several natural language processing tasks (Mikolov et al., 2013; Turian

et al., 2010; Levy and Goldberg, 2014). Embedding has also been successfully applied to machine translation (MT)

where it enables varying-length phrases to be mapped to fixed-length vectors using an RNN Encoder�Decoder (Cho
Fig. 4. Schematic depiction of the on-line reward estimator. The two main system components: dialogue embedding creation, and reward model-

ling based on user feedback, are described in Section 5.



Fig. 5. Unsupervised dialogue embedding using the LSTM Encoder�Decoder structure.
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TaggedPet al., 2014). Here, an embedded representation of the sequence of dialogue turn level features is computed in order

to drive the reward model.

TaggedPTwo methods of generating dialogue embeddings have been explored: a supervised and an unsupervised

approach. Once computed, these embeddings are used as the observations for the reward model described in Sec-

tion 5.2.
TaggedP5.1.1. Supervised dialogue embedding

TaggedPIn this case, the RNN described in Section 4.2 is used whereby the hidden layer hT at the final turn T serves as the

dialogue representation ds to summarise the entire dialogue in a single fixed-length vector. Note, however, that as

with the off-line reward estimator described in Section 4.2, this approach requires training data which is expensive

to collect and may be biased with respect to the target population.
TaggedP5.1.2. Unsupervised dialogue embedding

TaggedPTo avoid the need for labelled training data, an encoder�decoder structure can be used to generate dialogue repre-

sentations. The basic set-up is illustrated in Fig. 5. Turn level feature sequences ft as described in Section 4.1 are

input to the model, encoded and then decoded to reconstruct the input. The encoder is a Bi-directional Long Short-

Term Memory network (BLSTM) (Hochreiter and Schmidhuber, 1997; Graves et al., 2013), which has been shown

to outperform uni-directional LSTM in various tasks (Chiu and Nichols, 2015; Huang et al., 2015). It takes into

account the sequential information from both directions of the input data, computing the forward hidden sequences!
h1:T and the backward hidden sequences

 
hT :1 while iterating over all input features ft, t ¼ 1; . . . ; T :

!
ht ¼ LSTMðft;!ht�1Þ 
ht ¼ LSTMðft; htþ1Þ

where LSTM denotes the activation function. The dialogue representation du is then calculated as the average over all

hidden sequences:

du ¼ 1

T

XT
t¼1

ht ð6Þ

where ht ¼ ½!ht ; ht � is the concatenation of the two directional hidden sequences.3 The decoder is a forward LSTM

that takes du as its input for each turn t to produce the sequence of features f01: T. The encoder�decoder is trained by

minimising the mean-square-error (MSE) using stochastic gradient decent (SGD):

MSE ¼ 1

N

XN
i¼1

XT
t¼1

k f t�f 0t k 2 ð7Þ
3 Note use of a bi-directional LSTM does not cause any difficulty at run time because we are only interested at predicting success at the end of

the dialogue.
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TaggedPwhere N is the number of training dialogues and jj ¢ jj2 denotes the l2-norm.

5.2. Active reward learning

TaggedPA Gaussian process is a Bayesian non-parametric model that can be used for regression or classification (Rasmus-

sen and Williams, 2006). It is particularly appealing since it can learn from a small number of observations by

exploiting the correlations defined by a kernel function and it provides a measure of uncertainty of its estimates. In

the context of spoken dialogue systems it has been successfully used for RL policy optimisation (Ga�si�c and Young,

2014; Casanueva et al., 2015) and IRL reward function regression (Kim et al., 2014).

TaggedPHere, we propose modelling dialogue success as a Gaussian process (GP). This involves estimating the probabil-

ity pðyjd;DÞ that the task was successful given the current dialogue representation d and the pool D containing pre-

viously classified dialogues. We pose this as a classification problem where the rating is a binary observation

y2 f�1; 1g that defines failure or success. The observations y are considered to be drawn from a Bernoulli distribu-

tion with a success probability pðy ¼ 1jd;DÞ. The probability is related to a latent function f ðdjDÞ : RdimðdÞ!R
that is mapped to a unit interval by a probit function pðy ¼ 1jd;DÞ ¼ fðf ðdjDÞÞ; where f denotes the cumulative

density function of the standard Gaussian distribution.

TaggedPThe latent function is given a GP prior: f ðdÞ»GPðmðdÞ; kðd; d0ÞÞ; where m( ¢ ) is the mean function and k(¢,¢) the
covariance function (kernel). The stationary squared exponential kernel kSE is used. It is also combined with a white

noise kernel kWN to account for the “noise” in users’ ratings:

kðd; d0Þ ¼ p2 exp � k d�d0 k 2
2l2

� �
þ s2

n ð8Þ

where the first term denotes kSE and the second term kWN.

TaggedPThe hyper-parameters p, l, and sn can be optimised by maximising the marginal likelihood using a gradient-based

method (Chen et al., 2015). Since f( ¢ ) is not Gaussian, the resulting posterior probability pðy ¼ 1jd;DÞ is analyti-
cally intractable. So instead approximate optimisation was performed using expectation propagation (EP) (Nickisch

and Rasmussen, 2008).

TaggedPQuerying the user for feedback is costly and may have a negative impact on the user experience. This can be

reduced by using active learning based on uncertainty estimates of the GP model (Kapoor et al., 2007). This ensures
Fig. 6. 1-dimensional example of the proposed GP active reward learning model.
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TaggedPthat user feedback is only sought when the model is uncertain about its current prediction. For the case here, an on-

line (stream-based) version of active learning is required.

TaggedPA 1-dimensional example is shown in Fig. 6. Given the labelled data D; the predictive posterior mean m* and pos-

terior variance s2
� of the latent value f(d*) for the current dialogue representation d* can be calculated. Then a thresh-

old interval ½1�λ; λ� is set on the predictive success probability pðy� ¼ 1jd�;DÞ ¼ fðm�=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2�

p Þ to decide

whether this dialogue should be labelled or not. The decision boundary implicitly considers both the posterior mean

as well as the variance.

TaggedPWhen deploying this reward model in the proposed framework, a GP with a zero-mean prior for f is initialised and

D ¼ fg. After the dialogue policy p completes each episode with the user, the generated dialogue turns are trans-

formed into the dialogue representation d ¼ sðf1:TÞ using the dialogue embedding function &. Given d, the predic-

tive mean and variance of f ðdjDÞ are determined, and the reward model decides whether or not it should seek user

feedback based on the threshold λ on fðf ðdjDÞÞ. If the model is uncertain, the user’s feedback on the current episode

d is used to update the GP model and to generate the reinforcement signal for training the policy p; otherwise the

predictive success rating from the reward model is used directly to update the policy. This process takes place after

each dialogue.
6. Experiments

6.1. Experimental settings

TaggedPAll of the experiments used the target domain and spoken dialogue system structure described in Section 3. Policy

training used the reward given by Eq. (4.1) and the maximum dialogue length was set to 30. The on-line system used

paid subjects recruited via Amazon Mechanical Turk (AMT). Each user was assigned specific tasks in a given sub-

domain and then asked to call the system in a similar set-up to that described in Jur�c�ı�cek et al. (2011), Ga�si�c et al.

(2013). After each dialogue, the users were asked whether they judged the dialogue to be successful or not. Based on

that binary rating, the subjective success was calculated as well as the average reward. An objective rating was also

computed by comparing the system outputs with the assigned task specification.
6.2. Off-line reward estimator
TaggedP6.2.1. RNN-based dialogue success prediction

TaggedPThe off-line reward estimator described in Section 4 was implemented using the Theano library (Bastien et al.,

2012; Bergstra et al., 2010), with a hidden layer of 300 units and sigmoid activation units. All models were trained

using stochastic gradient descent (per dialogue) on data generated by three independently trained GP-based poli-

cies interacting with a simulated user at a 15% semantic error rate (SER) (Schatzmann and Young, 2009). One

model was fully trained on 18K dialogues (train-18K) and second model was trained on only 1K dialogues (train-

1K). The contrast between the larger train-18K set and the smaller train-1K set is provided to give some insight

into the impact of reduced availability of training data. A separate validation set of 1K dialogues was also gener-

ated to avoid overfitting.

TaggedPThere were two test sets: a matched set of 1K dialogues generated at SER 15% (testA) and a larger set containing

3K dialogues at each of four SERs: 0%, 15%, 30%, and 45% (testB) where the latter provides an indication of how

models perform when there is a mis-match between train and test sets.

TaggedPFor each dialogue, the input features were represented as the concatenation of four segments as shown in Fig. 2,

which were realised in two configurations: a domain-dependent feature vector F617 and a domain-independent fea-

ture vector F 74 (Vandyke et al., 2015) where the subscripts denote the size of the vectors.

TaggedPFor F617; the number of elements were 21, 575, 20, 1, respectively, for the user act, full belief state, system action

and rescaled turn number. The full belief state was the concatenation of the distribution over each domain-dependent

slot such as price-range and area and the distribution over domain-independent features relating to the user’s dis-

course. For the system act, a fixed set of generic system actions (e.g. goodbye) and Na slot-dependent system actions

was available for each slot S (e.g. ‘request-S’, ‘confirm-S’, etc.). Given Ns slots, this will result in Ns£Na slot-

dependent system actions.



Fig. 7. Prediction of the RNN model trained on 18K and 1K dialogues and tested on sets testA and testB (see text). Results of success/failure label

F-measure (left axis) are represented as bars.
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TaggedPFor F74; the number of features were 21, 38, 14, 1, respectively, for the user act, summarised belief state, domain-

independent system action and rescaled turn number. Note that this was designed to be a light-weight feature vector

applicable across multiple domains. The difference between the summarised and full belief state is that each set of

domain-dependent slot distributions is represented by a normalised entropy value. Thus the entire summarised belief

state is domain-independent. Similarly, a domain-independent system action was created by mapping slot-dependent

system actions to a single slot-independent action (e.g. ‘request-S1’, . . . ; ‘request-SNs
’ 7! ‘request’). The rescaled

turn number was expressed as a percentage of the maximum number of allowed turns, here 30. The one-hot user dia-

logue action encoding was formed by taking only the most likely user action estimated by the CNet semantic

decoder.

TaggedPAs described in Section 4.2, both binary success classification models and reward regression models were trained.

For the case of binary success classification, both input feature sets F617 and F74 were tested. For the regression case

only F617 was tested. The results are shown in Fig. 7, where the y-axis is the F-measure of the success classification

(bar plot). When using the large training set (18K, Fig. 7(1) and (3)), all models obtained an F-score above 0.93

on success label prediction and were within » § 0.03 of the objective return targets on testA and within » § 0.05

on testB.

TaggedPWithout the benefit of a simulated user, it may not be possible to obtain sufficient labelled training dialogues to

fully train the RNN model. However, the results shown in Fig. 7(2) and (4) suggest that the model is reasonably

robust even with as little as 1000 training dialogues. In this case, the binary classification model is the most accu-

rate.

TaggedPNote that the domain specific feature set F 617 only slightly outperformed the domain independent F74 set.

Therefore given the desirability of domain independence, the remaining sections focus on the use of the F74 feature

set.

TaggedPOverall, these results suggest that RNNs, sequentially processing turn level features, are able to provide useful

estimates of success and reward. The results on set testB also show that the models can perform well under varying

error rates as would be encountered in real operating environments.

TaggedP6.2.2. Policy learning with human users

TaggedPBased on the above results, the binary RNN classification model with the feature vector F74 was selected for

training dialogue policies on-line. Two systems were trained by users recruited via AMT. Firstly, an Obj=Subj sys-

tem was built trained only with the dialogues whose user Subj rating matched the system Obj measurement. This of

course requires knowledge of each task in order to compute the reward, and hence would not be viable for real users.

However, it serves as a useful baseline.

TaggedPSecondly, a system was trained using only the RNN to compute the reward signal. Note that a hand-crafted sys-

tem is not used for comparison here since it does not scale to larger domains and is sensitive to speech recognition

errors. Three policies were trained for each system, then averaged to statistically verify the performance. Fig. 8

shows how the success rate improves as a function of the number of available training dialogues up to a maximum



Fig. 8. Learning curve for the reward plotted as a function of the number of training dialogues. The baseline system (red line) updates the policy

only when the Subj and Obj measures agreed. The blue line shows training using the RNN dialogue success predictor. The lightly coloured bands

denote 1 standard error. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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TaggedPof 500 dialogues. For both plots, the moving average was calculated using a window of 150 dialogues and each result

was the average of the three policies in order to reduce noise. It can be seen that the final performance of the RNN

system resulted in a comparable policy to the baseline system. However, the baseline system actually required

» 850 dialogues (due to discarding the cases where Obj 6¼ Subj). In contrast, the RNN system was more efficient and

less costly since it used every dialogue.

TaggedPThe results indicate that the RNN dialogue success classifier was able to train a policy at least as well as the base-

line system even though the baseline required prior knowledge of the users goal and selected only dialogues where

the objective and subjective success estimates agreed.

6.3. On-line reward estimator

TaggedP6.3.1. Supervised and unsupervised dialogue representations

TaggedPThe supervised RNN model described in Section 5.1.1 and the LSTM Encoder�Decoder model described

in Section 5.1.2 were used to generate supervised and unsupervised representations ds and du for each dialogue.

The domain-independent feature vector F 74 was used as the input of both embedding models and the target for the

LSTM Encoder�Decoder model, where in the latter case the training objective was to minimise the MSE of the

reconstruction loss.

TaggedPFor the supervised embedding, the size of hidden layer ds, was set to 32. In the unsupervised case, the sizes of
!
ht

and
 
ht in the encoder and the hidden layer in the decoder were all 32, resulting in dim(ht) = dim(du) = 64. SGD per

dialogue was used to train each model. In order to prevent over-fitting, early stopping was applied based on the

held-out validation set.

TaggedPThe data used to train the supervised dialogue embedding were the simulated dialogues train-1K and the valida-

tion set as specified in Section 6.2.1, and testA served as the test set. This dataset is denoted by sim. The embedding

function was thus effectively the intermediate product created during the training of the RNN-based off-line reward

model described in Section 6.2. For the unsupervised dialogue embedding, two datasets were investigated: firstly,

the same dataset used to train the supervised embedding as mentioned above; and secondly, a corpus consisting of

8565, 1199 and 650 real user dialogues in the Cambridge restaurant domain was used for training, validation and

testing respectively. This corpus was collected in previous user trials using paid subjects recruited via the AMT ser-

vice. Thus this dataset is denoted by amt.

TaggedPIn order to visualise the effect of the embeddings, all of the test dialogues were transformed using the two embed-

ding functions and the resulting representations dsims ; dsimu and damtu were plotted using t-SNE (Van der Maaten

and Hinton, 2008). The results are shown in Figs. 9 and 10. For each dialogue sample, the shape indicates whether



Fig. 9. t-SNE visualisation on the supervised dialogue representations of the simulated data dsims in the Cambridge restaurant domain. Labels are

the subjective ratings from the users and colours represent the total length of each dialogue.
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TaggedPor not the dialogue was successful, and the colour indicates the length of the dialogue (maximum 30 turns). As can

be seen in Fig. 9, the supervised embedding function trained on simulated data clearly separates successful and failed

dialogues into two categories. It is also clear that in simulation, the successful dialogues were mostly short and the

failed ones were mostly aborted when the 30 turn limit was reached.

TaggedPThe patterns for the unsupervised embedding trained on both data are rather different, which are shown in

Fig. 10(a) and (b). In Fig. 10(a), the successful dialogues are distributed according to dialogue length from the

bottom (shorter dialogues) to the top (longer dialogues). Compared to the patterns in Fig. 9, the separation
Fig. 10. t-SNE visualisation on (a) the unsupervised dialogue representations of the simulated data dsimu ; and (b) the unsupervised dialogue repre-

sentations of the real user data damtu in the Cambridge restaurant domain. Labels are the subjective ratings from the users and colours represent the

total length of each dialogue.
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TaggedPbetween successful and failed dialogues is less obvious, since the unsupervised embedding function was trained

without success labels. Similar patterns can be found in Fig. 10(b). These show that dialogue length was one of

the most prominent features in the unsupervised dialogue representations dsim
u and damt

u . Also for the dataset

amt, the failed dialogues were distributed over all of the length range and the successful dialogues were on average

shorter than 10 turns.

TaggedPInvestigating these two datasets sim and amt, it appears that whilst simulated and real data follow similar patterns

in successful dialogues, typified by short conversations and clear information exchange between the user and the sys-

tem, there is much more diversity in the real dialogues. This is especially the case for failed dialogues where real

users halt the conversation as soon as they lose patience whereas simulated users persist until the maximum turn

limit is reached. Note that for the simulated users, there is a patience setting which terminates the dialogue once the

number of repetitive system responses reaches a certain threshold. However, real users demonstrate impatience in

many different ways such as getting inconsistent system responses.

TaggedP6.3.2. Dialogue policy learning

TaggedPGiven well-trained dialogue embedding functions, the proposed GP reward model operates on the embedded

input space. The system was implemented using the GPy library (Hensman et al., 2012). Given the predictive success

probability of each newly seen dialogue, the threshold λ for the uncertainty region was initially set to 1 to encourage

label querying and annealed to 0.85 over the first 50 collected dialogues and then fixed at 0.85 thereafter. Initially,

as each new dialogue was added to the training set, the hyper-parameters that define the kernel structure defined in

Eq. (8) were optimised to minimise the negative log marginal likelihood using conjugate gradient ascent (Rasmussen

and Williams, 2006). To prevent overfitting, after the first 40 dialogues, these hyper-parameters were only re-opti-

mised after every batch of 20 dialogues.

TaggedPTwo systems: on-line GP supervised and on-line GP unsupervised were trained with a total of around 350 dia-

logues on-line by users recruited via the AMT service. Fig. 11 shows the on-line learning curve of subjective success

during training. For each system, the moving average was calculated using a window of 150 dialogues. In each case,

three distinct policies were trained and the results were averaged to reduce noise.

TaggedPAs can be seen, both systems had better than 80% subjective success rate after approximately 200 training dia-

logues. the supervised model performed slightly better during the learning process, and both converged to similar

performance. This may be because the supervised embedding function was trained with knowledge of the objective

success, and this is correlated to the subjective success ratings of real users. Nevertheless, after 300 dialogues both
Fig. 11. Learning curves showing subjective success as a function of the number of training dialogues used during on-line policy optimisation.

The on-line GP supervised, on-line GP unsupervised and Obj=Subj systems are shown as green, black, and red lines. The light-coloured areas are

one standard error intervals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this arti-

cle.)
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TaggedPembeddings achieve similar performance suggesting that the unsupervised embedding is perfectly adequate for the

task, and it has the significant advantage that it can be trained on real data without annotations. In the following, the

unsupervised method was therefore chosen for further investigation.

TaggedPIn addition to the above comparisons, two other systems were explored which used different methods to compute

the reward:

TaggedP� the Subj system which directly optimises the policy using only the user’s subjective assessment of success
F

T

v

ig

h

al
whether accurate or not.
TaggedP�
 the off-line RNN system that uses 1K simulated data and the corresponding Obj labels to train an RNN success

estimator as in Su et al. (2015a).

TaggedPFor the Subj system rating, in order to focus solely on the performance of the policy rather than other aspects of

the system such as the fluency of the reply sentence, users were asked to rate dialogue success by answering the fol-

lowing question: Did you find all the information you were looking for?

TaggedPFig. 12 shows the on-line learning curve of the subjective success rating with the moving average of 150 dia-

logues when training the three systems: on-line GP (with unsupervised embedding), Subj, and off-line RNN. In each

case, three distinct policies were trained and the results were averaged to reduce noise. The systems were trained

with a total of 500 dialogues on-line by users recruited via the AMT service.

TaggedPWe can clearly see that all three systems perform better than 85% subjective success rate after approximately 500

training dialogues. To investigate learning behaviour over longer spans, training for the on-line GP and the Subj sys-

tems was extended to 850 dialogues. As can be seen, performance in both cases is broadly flat.

TaggedPSimilar to the conclusions drawn in Ga�si�c et al. (2011), the Subj system appears to suffer from unreliable user

feedback. As with the Obj=Subj system in Fig. 8, this is partly due to users forgetting the full requirements of the

task and in particular, they forget to ask for all required information. From Fig. 12 it can be clearly seen that the

on-line GP system consistently performed better than Subj system, presumably, because its noise model mitigates

the effect of inconsistency in user feedback. Of course, unlike crowd-sourced subjects, real users might provide

more consistent feedback, but nevertheless, some inconsistency is inevitable and the noise model offers the needed

robustness.

TaggedPThe advantage of the on-line GP system in reducing the number of times that the system requests user feedback (i.

e. the label cost) can be seen in Fig. 13. The black curve shows the number of active learning queries triggered in the

on-line GP system averaged across the three policies. This system required only 150 user feedback requests to train
. 12. Learning curves showing subjective success as a function of the number of training dialogues used during on-line policy optimisation.

e on-line GP, Subj and off-line RNN systems are shown as black, yellow, and blue lines. The light-coloured areas are one standard error inter-

s. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



Fig. 13. The number of times each system queries the user for feedback during on-line policy optimisation as a function of the number of training

dialogues. The orange line represents the Subj system, and the black line stands for the on-line GP system. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)
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TaggedPa robust reward model. On the other hand, the Subj system requires user feedback for every training dialogue as

shown by the dashed orange line (of course, the same applies to the Obj=Subj system in the previous experiment).

TaggedPOf course, the off-line RNN system required no user feedback at all when training the system on-line since it had

the benefit of prior access to a user simulator. Its performance during training after the first 300 dialogues was, how-

ever, inferior to the on-line GP system.
TaggedP6.3.3. Dialogue policy evaluation

TaggedPIn order to compare performance, the averaged results obtained between 400�500 training dialogues are shown in

the first section of Table 1 along with one standard error. For the 400�500 interval, the Subj, off-line RNN and on-

line GP systems achieved comparable results without statistical differences. The results of continuing training on the

Subj and on-line GP systems from 500 to 850 training dialogues are also shown. As can be seen in the table, the on-

line GP system was significantly better presumably because it is more robust to erroneous user feedback compared

to the Subj system.
TaggedP6.3.4. Reward model evaluation

TaggedPThe above results verify the effectiveness of the proposed reward model for policy learning. Here, we investigate

further the accuracy of the on-line GP model in predicting the subjective success rate. An evaluation of the on-line

GP reward model between 1 and 850 training dialogues is presented in Table 2.
Table 1

Subjective evaluation of the off-line RNN, Subj and on-line GP sys-

tem during different stages of on-line policy learning. Subjective:

user binary rating on dialogue success. Statistical significance was

calculated using a two-tailed Students t-test with p-value of 0.05.

Dialogues Reward model Subjective (%)

400�500 Off-line RNN 89.0 § 1.8

Subj 90.7 § 1.7

On-line GP 91.7 § 1.6

500�850 Subj 87.1 § 1.0

On-line GP 90.9 § 0.9*

* p< 0:05:



Table 2

Statistical evaluation of the prediction of the

on-line GP systems with respect to Subj rating.

Subj Precision Recall F-measure Number

Fail 1.00 0.52 0.68 204

Suc. 0.95 1.00 0.97 1892

Total 0.96 0.95 0.95 2096
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TaggedPSince three reward models were learnt each with 850 dialogues, there were a total of 2550 training dialogues. Of

these, the on-line GP model queried the user for feedback a total of 454 times, leaving 2096 dialogues for which

learning relied on the reward model’s prediction. Therefore, for a fair comparisons results shown in the table are

averaged over 2096 dialogues.

TaggedPAs can be seen, there was a significant imbalance between successful and failed dialogues since the policy was

improving along with the training dialogues. This lowered the recall on failed dialogue prediction is expected since

the model is biased toward successful dialogues. Overall, however, performance as judged by F-measure appears to

be adequate.

6.4. Example dialogues

TaggedPThe key benefits of the on-line GP reward model compared to other models are its robustness to noise and effi-

cient use of user supervision. Since the four systems compared above differ only in the design of the reward model

(learning objective), their on-line behaviours were broadly similar.
Table 3

Example dialogues between on-line users and the proposed on-line GP system.

-Low noise condition- (User Subjective Evaluation: Success, on-line GP evaluation: Success)

Machine : Hello, welcome to the Cambridge dialogue system, what kind of food would you like?

Human : [Top ASR] Yeah I want to find a restaurant that serves European food.

[Top SEM] inform (food=european, type=restaurant)

Machine : Hotel du Vin and Bistro is a nice place. It serves European food.

Human : [Top ASR] Uh what is the address and phone number?

[Top SEM] request (phone, addr)

Machine : Hotel du Vin and Bistro is a nice place. Their address is 15�19 Trumpington Street and their phone is 01223 227330.

Human : [Top ASR] Thank you goodbye.

[Top SEM] bye()

Machine : Thank you for using this system.

-High noise condition- (User Subjective Evaluation: Success,on-line GP evaluation: Success)

Machine : Hello, welcome to the Cambridge dialogue system, What kind of food would you like?

Human : [Top ASR] And I want to find an expensive restaurant it should be in the south part of town.

[Top SEM] inform (area=south, price range=expensive, type=restaurant)

Machine : Gourmet burger kitchen is a nice place it is in the expensive price range.

Human : [Top ASR] And do you have something else?

[Top SEM] null()

[2nd SEM] reqalts()

Machine : Did you say you are looking for a venue in the area of south?

Human : [Top ASR] Yes.

[Top SEM] affirm()

Machine : Frankie and Benny’s is a nice place, it is in the south part of town and it is in the expensive price range.

Human : [Top ASR] Okay can I have the uh address phone number called for any.

[Top SEM] request(addr)

[2nd SEM] request (phone, addr)

Machine : Frankie and Benny’s is a nice place. Their address is Clifton Way and their phone number is 01223 412430.

Human : [Top ASR] What is the pub called for free you any?

...

[5th ASR] What is the post code for free you any?

[Top SEM] request (postcode)

Machine : Frankie and Benny’s is a nice place. Their postcode is C.B 1, 7 D.Y.

Human : [Top ASR] Thank you goodbye.

[Top SEM] bye()

Machine : Thank you for using this system.
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TaggedPTwo example dialogues between users and the on-line GP system are listed in Table 3 to illustrate how the system

operates under different noise conditions. The user’s subjective rating and the rating determined by the on-line GP

reward model are also shown. The labels ‘nth ASR’ and ‘nth SEM’ indicate the nth most likely hypotheses from the

speech recogniser and the semantic decoder, respectively.
7. Conclusion

TaggedPComputing a reliable reward function for training a dialogue policy on-line using reinforcement learning is diffi-

cult since the user’s objective is usually unknown. Directly querying the user at the end of each dialogue is equally

problematic since the resulting feedback is often inaccurate and repeated querying for feedback can be intrusive.

TaggedPThis paper has explored the design of a reward model which automatically estimates the success of a dialogue by

monitoring the sequence of dialogue turns. Two approaches were investigated. Firstly, a recurrent neural network

was utilised as a task success predictor which was pre-trained from off-line data. Secondly, an on-line learning

framework was described whereby the dialogue policy is jointly trained alongside the reward function modelled as a

Gaussian process with active learning. To provide a fixed size input space for the Gaussian process, variable length

dialogue turn sequences are embedded using both a supervised recurrent neural network, and an unsupervised RNN-

based encoder�decoder. Both perform similarly, but the latter has the advantage of requiring no task success annota-

tion and can therefore be trained on unlabelled corpora.

TaggedPThis on-line reward model enables stable policy optimisation by robustly modelling the inherent noise in real user

feedback and uses active learning to minimise the number of feedback requests to the user. The proposed on-line

reward models achieved efficient policy learning and better performance compared to other state-of-the-art methods

in the Cambridge restaurant domain. A key advantage of this Bayesian model is that its uncertainty estimate allows

active learning and noise handling in a natural way. This mitigates the two key problems of requesting direct user

feedback: it minimises the intrusive nature of asking for feedback, and it successfully filters inaccurate user

responses.

TaggedPOverall, the techniques developed in this paper enable for the first time viable approaches to on-line learning in

deployed real-world dialogue systems. Dialogue policies can be learned from scratch without requiring the collection

and annotation of bootstrap training data or the construction of a user simulator.

TaggedPAs with all of our previous work, the reward function studied here is focused primarily on task success and this

may be too simplistic for many commercial applications. Further work may therefore be needed in conjunction with

human interaction studies to identify and incorporate the further dimensions of dialogue quality needed to optimise

user satisfaction. Nevertheless, task success is likely to remain the principal component of user satisfaction for the

majority of applications, and hence the work reported here should be a major step forward in the practical deploy-

ment of systems which can learn and improve on-line without manual intervention.
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